Skip to main content
Log in

Response Solutions for Wave Equations with Variable Wave Speed and Periodic Forcing

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider a model of nonlinear wave equations with periodically varying wave speed and periodic external forcing. By imposing non-resonance conditions on the frequency, we establish the existence of response solutions (i.e., periodic solutions with the same frequency as the forcing) for such a model in a Cantor set of asymptotically full measure. The proof relies on a Lyapunov–Schmidt reduction together with the Nash–Moser iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbu, V., Pavel, N.H.: Periodic solutions to one-dimensional wave equation with piece-wise constant coefficients. J. Differ. Equ. 132(2), 319–337 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbu, V., Pavel, N.H.: Periodic solutions to nonlinear one-dimensional wave equation with \(x\)-dependent coefficients. Trans. Am. Math. Soc. 349(5), 2035–2048 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti, M., Bolle, P.: Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134(2), 359–419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berti, M., Bolle, P.: Cantor families of periodic solutions of wave equations with \({C}^k\) nonlinearities. NoDEA Nonlinear Differ. Equ. Appl. 15(1–2), 247–276 (2008)

    Article  MATH  Google Scholar 

  5. Berti, M., Corsi, L., Procesi, M.: An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Commun. Math. Phys. 334(3), 1413–1454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Not. 1994(11), 475–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5(4), 629–639 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calleja, R.C., Celletti, A., Corsi, L., de la Llave, R.: Response solutions for quasi-periodically forced, dissipative wave equations. SIAM J. Math. Anal. 49(4), 3161–3207 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calleja, R.C., Celletti, A., de la Llave, R.: Construction of response functions in forced strongly dissipative systems. Discrete Contin. Dyn. Syst. 33(10), 4411–4433 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colombini, F., De Giorgi, E., Spagnolo, S.: Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 6(3), 511–559 (1979)

    MathSciNet  MATH  Google Scholar 

  11. Colombini, F., Métivier, G.: Counterexamples to the well posedness of the Cauchy problem for hyperbolic systems. Anal. PDE 8(2), 499–511 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Abbicco, M., Reissig, M.: Long time asymptotics for 2 by 2 hyperbolic systems. J. Differ. Equ. 250(2), 752–781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Delort, J.-M.: Periodic solutions of nonlinear Schrödinger equations: a paradifferential approach. Anal. PDE 4(5), 639–676 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eliasson, L.H., Grébert, B., Kuksin, S.B.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26(6), 1588–1715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, Y., Li, Y., Zhang, J.: Invariant tori of nonlinear Schrödinger equation. J. Differ. Equ. 246(8), 3296–3331 (2009)

    Article  MATH  Google Scholar 

  17. Gauckler, L., Hairer, E., Lubich, C.: Long-term analysis of semilinear wave equations with slowly varying wave speed. Commun. Partial Differ. Equ. 41(12), 1934–1959 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gentile, G., Mazzoccoli, A., Vaia, F.: Forced quasi-periodic oscillations in strongly dissipative systems of any finite dimension. Commun. Contemp. Math. 21(7), 1850064 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haus, E., Procesi, M.: KAM for beating solutions of the quintic NLS. Commun. Math. Phys. 354(3), 1101–1132 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirosawa, F.: On the asymptotic behavior of the energy for the wave equations with time depending coefficients. Math. Ann. 339(4), 819–838 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hirosawa, F.: Energy estimates for wave equations with time dependent propagation speeds in the gevrey class. J. Differ. Equ. 248(12), 2972–2993 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji, S., Li, Y.: Periodic solutions to one-dimensional wave equation with \(x\)-dependent coefficients. J. Differ. Equ. 229(2), 466–493 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ji, S., Li, Y.: Time periodic solutions to the one-dimensional nonlinear wave equation. Arch. Ration. Mech. Anal. 199(2), 435–451 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kong, Q., Zettl, A.: Eigenvalues of regular Sturm–Liouville problems. J. Differ. Equ. 131(1), 1–19 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuchment, P.A.: Floquet theory for partial differential equations. Uspekhi Mat. Nauk 37(4(226)), 3–52 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen. 21(3), 22–37 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac Operators, Volume 59 of Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1991). (translated from the Russian)

    Google Scholar 

  28. Marchenko, V.: Sturm–Liouville operators and their applications. Kiev Izdatel Naukova Dumka (1977)

  29. Procesi, C., Procesi, M.: A KAM algorithm for the resonant non-linear Schrödinger equation. Adv. Math. 272, 399–470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations. Commun. Pure Appl. Math. 20, 145–205 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations II. Commun. Pure Appl. Math. 22, 15–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  32. Spagnolo, S.: The Cauchy problem for Kirchhoff equations. In: Proceedings of the Second International Conference on Partial Differential Equations (Italian) (Milan, 1992), vol. 62, pp. 17–51 (1994)

  33. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-order Differential Equations, vol. 2. Clarendon Press, Oxford (1958)

    MATH  Google Scholar 

  34. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yagdjian, K.: Global existence in the Cauchy problem for nonlinear wave equations with variable speed of propagation. New Trends in the Theory of Hyperbolic Equations, Volume 159 of Operator Theory: Advances and Applications, pp. 301–385. Birkhäuser, Basel (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixian Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of BC was supported in part by NSFC Grant 11901232 and the China Postdoctoral Science Foundation Grants 2019M651191, 2020T130243; The research of YG was is supported by NSFC Grants 11871140, 12071065, JJKH 20180006KJ, FRFCU 2412019BJ005 and National Key R&D Program of China 2020YFA0714102; The research of YL was supported in part by NSFC Grant 12071175.

Appendix

Appendix

In the Appendix, we will supplement some results used in the proof of Theorem 1.2 for completeness. First, we need to give the proof of Remark 1.1.

Proof

(Proof of Remark 1.1) (i) For all \(u,v\in H^s\), we decompose \(uv=\sum _{j} (\sum _{k}u_{j-k}v_{k})e^{\mathrm {i}jx}\). Then using the Cauchy inequality yields that

$$\begin{aligned} \Vert uv\Vert ^2_{s}&=\textstyle \sum \limits _{j}(1+j^{2s})\Vert \sum \limits _{k}u_{j-k}v_{k}\Vert ^2_{H^1} \le \sum \limits _{j}(\sum _{k}(1+j^{2s})^{\frac{1}{2}}c_{jk}\Vert u_{j-k}v_{k}\Vert _{H^1}\frac{1}{c_{jk}})^2\\&\le \textstyle \sum \limits _{j}(\sum _{k}\frac{1}{c^2_{jk}})( \sum \limits _{k}\Vert u_{j-k}\Vert ^2_{H^1}(1+(j-k)^{2s})\Vert v_{k}\Vert ^2_{H^1}(1+k^{2s})), \end{aligned}$$

where \(c^2_{jk}=\frac{(1+k^{2s})(1+(j-k)^{2s})}{1+j^{2s}}\). Moreover, it is clear that

$$\begin{aligned} 1+j^{2s}&\le 1+(k+j-k)^{2s}\le 1+2^{2s-1}(k^{2s}+(j-k)^{2s})\\&\le 2^{2s-1}(1+k^{2s})+2^{2s-1}(1+(j-k)^{2s}). \end{aligned}$$

This leads to

$$\begin{aligned} \textstyle \sum \limits _{k}\frac{1}{c^2_{jk}}\le 2^{2s-1}(\sum \limits _{k}\frac{1}{1+k^{2s}}+\sum \limits _{k}\frac{1}{1+(j-k)^{2s}}) =2^{2s}\sum \limits _{k}\frac{1}{1+k^{2s}}{\mathop {=:}\limits ^{s>1/2}}(C(s))^2. \end{aligned}$$

Hence we get the first conclusion in Remark 1.1.

(ii) From the Cauchy inequality, we get

$$\begin{aligned} \textstyle \max _{x\in {\mathbb {T}}}\Vert u(\cdot ,x)\Vert _{{H}^1({\mathbb {T}})}&\le C\sum \limits _{j}\Vert u_j\Vert _{H^1}\le C (\sum \limits _{j}\Vert u_j\Vert ^2_{H^1}(1+j^{2s}))^{\frac{1}{2}}(\sum \limits _{j}\frac{1}{1+j^{2s}})^{\frac{1}{2}}\\&\le C(s)\Vert u\Vert _{s}. \end{aligned}$$

Thus we arrive at the other one in Remark 1.1. \(\square \)

The next thing is to recall Lemmas 5.15.3 introduced in [4, cf. Lemmas 2.12.3].

Lemma 5.1

(Moser–Nirenberg) Let \(s'\ge 0\) and \(s>1/2\). For all \(u_1,u_2\in H^{s'}\cap H^s\), one has

$$\begin{aligned} \Vert u_1u_2\Vert _{s'}&\le \textstyle C(s')(\Vert u_1\Vert _{L^{\infty }({\mathbb {T}};H^1({\mathbb {T}}))}\Vert u_2\Vert _{{s'}}+\Vert u_1\Vert _{{s'}}\Vert u_2\Vert _{L^{\infty }({\mathbb {T}};H^1({\mathbb {T}}))}) \end{aligned}$$
(5.1)
$$\begin{aligned}&\le C(s')\left( \Vert u_1\Vert _{s}\Vert u_2\Vert _{{s'}}+\Vert u_1\Vert _{{s'}}\Vert u_2\Vert _{s}\right) . \end{aligned}$$
(5.2)

Lemma 5.2

(Logarithmic convexity) Let \(0\le \mathrm {a}\le \mathrm {a}'\le \mathrm {b}'\le \mathrm {b}\) with \(\mathrm {a}+\mathrm {b}=\mathrm {a}'+\mathrm {b}'\), and \({\mathfrak {v}}:=\frac{\mathrm {b}-\mathrm {a}'}{\mathrm {b}-\mathrm {a}}\). Then

$$\begin{aligned} \textstyle \Vert u_1\Vert _{\mathrm {a}'}\Vert u_2\Vert _{\mathrm {b}'}\le {\mathfrak {v}}\Vert u_1\Vert _{\mathrm {a}}\Vert u_2\Vert _{\mathrm {b}} +(1-{\mathfrak {v}})\Vert u_2\Vert _{\mathrm {a}}\Vert u_1\Vert _{\mathrm {b}},\quad u_1,u_2\in H^{\mathrm {b}}. \end{aligned}$$

In particular, one has

$$\begin{aligned} \Vert u\Vert _{\mathrm {a}'}\Vert u\Vert _{\mathrm {b}'}\le \Vert u\Vert _{\mathrm {a}}\Vert u\Vert _{\mathrm {b}},\quad u\in H^{\mathrm {b}}. \end{aligned}$$
(5.3)

Lemma 5.3

Let \(y\longmapsto f(\cdot ,y)\) be in \(C^1({\mathbb {R}};H^{1}({\mathbb {T}}))\) and \(m:=\Vert y\Vert _{L^{\infty }({\mathbb {T}})}\). Then the composition operator \(y(t)\longmapsto f(t,y(t))\) belongs to \(C(H^1({\mathbb {T}});H^1({\mathbb {T}}))\) satisfying

$$\begin{aligned} \textstyle \Vert f(\cdot ,y)\Vert _{H^1}\le C(\max _{y\in [-m,m]}\Vert f(\cdot ,y)\Vert _{H^1}+\max _{y\in [-m,m]}\Vert \partial _yf(\cdot ,y)\Vert _{H^1}\Vert y\Vert _{H^1}). \end{aligned}$$

Based on Lemmas 5.15.3, we have the following lemma.

Lemma 5.4

Let \((x,u)\longmapsto f(\cdot ,x,u)\) belong to \(C^\ell ({\mathbb {T}}\times {\mathbb {R}};H^1({\mathbb {T}}))\) with \(\ell \ge 1\). For all \(s>{1}/{2}\) and \(0\le s'\le \ell -1\), the composition operator \(u(t,x)\longmapsto f(t,x,u(t,x))\) is in \(C(H^{s}\cap H^{s'};H^{s'})\) with

$$\begin{aligned} \Vert f(t,x,u)\Vert _{{s'}}\le C(s',\Vert u\Vert _{s})(1+\Vert u\Vert _{{s'}}). \end{aligned}$$

Proof

If \(s'=\mathrm {p}\in {\mathbb {N}}\) with \(\mathrm {p}\le \ell -1\), then we prove that for all \(u\in H^{s}\cap H^{\mathrm {p}}\),

$$\begin{aligned} \Vert f(t,x,u)\Vert _{\mathrm {p}}\le C(\mathrm {p},\Vert u\Vert _{s})(1+\Vert u\Vert _{\mathrm {p}}), \end{aligned}$$
(5.4)

and that

$$\begin{aligned} f(t,x,u_n)\rightarrow f(t,x,u)\quad \text {as } u_n\rightarrow u ~\text {in } H^{s}\cap H^{\mathrm {p}}. \end{aligned}$$
(5.5)

Let us verify (5.4)–(5.5) by a recursive argument.

For \(\mathrm {p}=0\), it follows from Lemma 5.3 and Remark 1.1 that

$$\begin{aligned} \textstyle \Vert f(t,x,u)\Vert _{0}&\le \textstyle C\max _{x\in {\mathbb {T}}}\Vert f(\cdot ,x,u(\cdot ,x))\Vert _{H^1({\mathbb {T}})}\nonumber \\&\le \textstyle C'(1+\max _{x\in {\mathbb {T}}}\Vert u(\cdot ,x)\Vert _{H^1({\mathbb {T}})})\nonumber \\&\le \textstyle C''(1+\Vert u\Vert _{s})=:C(\Vert u\Vert _{s}). \end{aligned}$$
(5.6)

If \(\ell \ge 2\), then a similar argument as above can yield that

$$\begin{aligned} \textstyle \Vert \partial _{x}f(t,x,u)\Vert _{0}\le C(\Vert u\Vert _{s}),\quad \max _{x\in {\mathbb {T}}}\Vert \partial _{u}f(\cdot ,x,u(\cdot ,x))\Vert _{H^1({\mathbb {T}})}\le C(\Vert u\Vert _{s}). \end{aligned}$$
(5.7)

Moreover, it can be shown from Remark 1.1 that

$$\begin{aligned} \textstyle \max _{x\in {\mathbb {T}}}\Vert u_{n}(\cdot ,x)-u(\cdot ,x)\Vert _{H^1({\mathbb {T}})}\rightarrow 0 \quad \text{ as } u_n\rightarrow u \text{ in } H^{s}\cap H^{0}. \end{aligned}$$

Then using the continuity property in Lemma 5.3 and the compactness of \({\mathbb {T}}\) yields that

$$\begin{aligned} \textstyle \Vert f(t,x,u_{n})-f(t,x,u)\Vert _{0}\le C\max _{x\in {\mathbb {T}}}\Vert f(\cdot ,x,u_{n}(\cdot ,x))-f(\cdot ,x,u(\cdot ,x))\Vert _{H^1({\mathbb {T}})}\rightarrow 0 \end{aligned}$$

if \( u_n\) tends to u in \( H^{s}\cap H^{0}\).

Suppose that (5.4) could hold for \(\mathrm {p}=k\), with \(k\in {\mathbb {N}}^+\). We will show that it follows for \(\mathrm {p}=k+1\), where \(k+1 \le \ell -1\). Then the assumption for \(\mathrm {p}=k\) implies that for all \(u\in H^s\cap H^{k+1}\),

$$\begin{aligned} \Vert \partial _{x}f(t,x,u)\Vert _{k}\le C(k,\Vert u\Vert _{s})(1+\Vert u\Vert _{k}),\,\,\Vert \partial _{u}f(t,x,u)\Vert _{k}\le C(k,\Vert u\Vert _{s})(1+\Vert u\Vert _{k}). \end{aligned}$$
(5.8)

If we set \(\rho (t,x):=f(t,x,u(t,x))\), then \(\rho (t,x)=\sum _{j}\rho _{j}(t)e^{\mathrm{i}j x}\). Observe that \(\partial _{x}\rho (t,x)=\sum _{j}\mathrm {i}j\rho _{j}(t)e^{\mathrm{i}j x}\). Then the definition of s–norm (recall (1.6)) yields that

$$\begin{aligned} \textstyle \Vert \rho \Vert ^2_{k+1}&=\textstyle \sum \limits _{j}(1+j^{2(k+1)})\Vert \rho _{j}\Vert ^2_{H^1}= \sum \limits _{j}\Vert \rho _{j}\Vert ^2_{H^1}+\sum \limits _{j}j^{2k}j^2\Vert \rho _j\Vert ^2_{H^1}\\&=\textstyle \sum \limits _{j}\Vert \rho _{j}\Vert ^2_{H^1}+\sum \limits _{j}j^{2k}\Vert (\mathrm {i}j)\rho _j\Vert ^2_{H^1} \le (\Vert \rho \Vert _{0}+\Vert \partial _{x}\rho \Vert _{k})^2. \end{aligned}$$

This leads to

$$\begin{aligned} \Vert f(t,x,u)\Vert _{k+1}\le \Vert f(t,x,u)\Vert _{0}+\Vert \partial _{x}f(t,x,u)\Vert _{k}+\Vert \partial _{u}f(t,x,u)\partial _{x}u\Vert _{k}. \end{aligned}$$
(5.9)

If \(\mathrm {p}=1\) (\(k=0\)), then it follows from (5.6)–(5.7) and (5.9) that

$$\begin{aligned} \Vert f(t,x,u)\Vert _{1}&\le \textstyle \Vert f(t,x,u)\Vert _{0}+\Vert \partial _{x}f(t,x,u)\Vert _{0}+ C\max _{x\in {\mathbb {T}}}\Vert \partial _{u}f(\cdot ,x,u(\cdot ,x))\Vert _{H^1({\mathbb {T}})}\Vert \partial _{x}u\Vert _{0}\\&\le \textstyle 2C(\Vert u\Vert _{s})+C'(\Vert u\Vert _{s})\Vert u\Vert _{1}\le C(1,\Vert u\Vert _{s})(1+\Vert u\Vert _{1}). \end{aligned}$$

In addition, denote \({\mathfrak {s}}\in (\frac{1}{2},\min (1,s))\). It is easy to see that

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathfrak {{s}}<k<{\mathfrak {s}}+1<k+1,\quad k=1,\\ \mathfrak {{s}}<{\mathfrak {s}}+1<k<k+1,\quad k\ge 2. \end{array}\right. } \end{aligned}$$

Combining this with (5.3) shows that

$$\begin{aligned} \Vert u\Vert _{k}\Vert u\Vert _{{{\mathfrak {s}}+1}}\le \Vert u\Vert _{k+1}\Vert u\Vert _{{\mathfrak {s}}}\le \Vert u\Vert _{k+1}\Vert u\Vert _{s}. \end{aligned}$$
(5.10)

As a consequence, by (5.1), (5.6)–(5.10), we deduce

$$\begin{aligned} \Vert f(t,x,u)\Vert _{k+1}&\le C(\Vert u\Vert _{s})+C(k,\Vert u\Vert _{s})(1+\Vert u\Vert _{k})+C(k)\Vert \partial _{u}f(t,x,u)\Vert _{k} \Vert u_{x}\Vert _{L^{\infty }({\mathbb {T}};H^1({\mathbb {T}}))}\\&\quad +C(k) \Vert \partial _{u}f(t,x,u)\Vert _{L^{\infty }({\mathbb {T}};H^1({\mathbb {T}}))}\Vert u\Vert _{k+1}\\&\le C(\Vert u\Vert _{s})+C(k,\Vert u\Vert _{s})(1+\Vert u\Vert _{k})+C(k)C(k,\Vert u\Vert _{s})(1+\Vert u\Vert _{k})\Vert u\Vert _{{{\mathfrak {s}}+1}}\\&\quad +C(k)C(\Vert u\Vert _{s})\Vert u\Vert _{k+1}\\&\le C(k+1,\Vert u\Vert _{s})(1+\Vert u\Vert _{k+1}). \end{aligned}$$

Hence (5.4) follows for \(\mathrm {p}=k+1\).

On the other hand, suppose that (5.5) could hold for \(\mathrm {p}=k\). From formula (5.9), we get the continuity property of f with respect to u for \(\mathrm {p}=k+1\) with \(k+1\le \ell -1\).

If \(s'\) is not an integer, then the conclusion follows from the Fourier dyadic decomposition. The argument is similar to the proof of Lemma A.1 in [14]. \(\square \)

Lemma 5.5

Let \((x,u)\longmapsto f(\cdot ,x,u)\) be in \(C^\ell ({\mathbb {T}}\times {\mathbb {R}};H^1({\mathbb {T}}))\) with \(\ell \ge 3\). For all \(0\le s'\le \ell -3\), define the mapping

$$\begin{aligned} F:H^{s}\cap H^{s'}&\longrightarrow {H}^{s'},\quad u\longmapsto f(t,x,u). \end{aligned}$$

Then F is a \(C^2\) mapping with respect to u and satisfies that for all \(h\in H^s\cap H^{s'}\),

$$\begin{aligned} \mathrm{D}F(u)[h]=\partial _{u}f(t,x,u)h, \quad \mathrm{D}^2F(u)[h,h]=\partial ^2_{u}f(t,x,u)h^2, \end{aligned}$$

where

$$\begin{aligned} \Vert \partial _{u}f(t,x,u)\Vert _{{s'}}\le C(s',\Vert u\Vert _{s})(1+\Vert u\Vert _{{s'}}),\,\,\Vert \partial ^2_{u}f(t,x,u)\Vert _{{s'}}\le C(s',\Vert u\Vert _{s})(1+\Vert u\Vert _{{s'}}). \end{aligned}$$
(5.11)

Proof

For \(\ell \ge 3\), observe that

$$\begin{aligned} (x,u)&\longmapsto \partial _{u}f(\cdot ,x,u)\in C^{\ell -1}({\mathbb {T}}\times {\mathbb {R}};H^1({\mathbb {T}})),\\ (x,u)&\longmapsto \partial ^2_{u}f(\cdot ,x,u)\in C^{\ell -2}({\mathbb {T}}\times {\mathbb {R}};H^1({\mathbb {T}})). \end{aligned}$$

In view of Lemma 5.4, the mappings \(u\longmapsto \partial _{u}f(t,x,u)\), \(u\longmapsto \partial ^2_{u}f(t,x,u)\) are continuous and satisfy two estimates in (5.11).

It remains to verify that F is \(C^2\) with respect to u. Using the continuity property of \(u\longmapsto \partial _{u}f(t,x,u)\) yields that

$$\begin{aligned}&\Vert f(t,x,u+h)-f(t,x,u)-\partial _{u}f(t,x,u)h\Vert _{{s'}}\\&=\textstyle \Vert h\int _0^1(\partial _{u}f(t,x,u+{\mathfrak {v}} h)-\partial _{u}f(t,x,u))~\mathrm {d}{\mathfrak {v}}\Vert _{{s'}}\\&\le \textstyle C(s')\Vert h\Vert _{{\max {\{s,s'\}}}}\max _{{\mathfrak {v}}\in [0,1]}\Vert \partial _{u}f(t,x,u+{\mathfrak {v}} h)-\partial _{u}f(t,x,u)\Vert _{{\max {\{s,s'\}}}}\\&=\textstyle o(\Vert h\Vert _{{\max {\{s,s'\}}}}). \end{aligned}$$

This implies that \(\mathrm{D}F(u)[h]=\partial _{u}f(t,x,u)h\) and that \(u\longmapsto \mathrm{D}F(u)\) is continuous. In addition,

$$\begin{aligned}&\textstyle \partial _{u}f(t,x,u+h)h-\partial _{u}f(t,x,u)h-\partial ^2_{u}f(t,x,u)h^2\\&=h^2\int _0^1(\partial ^2_{u}f(t,x,u+{\mathfrak {v}} h)-\partial ^2_{u}f(t,x,u))~\mathrm {d}{\mathfrak {v}}. \end{aligned}$$

By the similar argument as above, F is twice differentiable with respect to u and that \(u\longmapsto \mathrm{D}^2_uF(u)\) is continuous.

Thus this completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Gao, Y., Li, Y. et al. Response Solutions for Wave Equations with Variable Wave Speed and Periodic Forcing. J Dyn Diff Equat 35, 811–844 (2023). https://doi.org/10.1007/s10884-021-10025-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-10025-1

Keywords

Mathematics Subject Classification

Navigation