Skip to main content
Log in

The Lugiato–Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we investigate the effect of nonlinear damping on the Lugiato–Lefever equation \(\mathrm {i}\partial _t a = -(\mathrm {i}-\zeta ) a - da_{xx} -(1+\mathrm {i}\kappa )|a|^2a +\mathrm {i}f\) on the torus or the real line. For the case of the torus it is shown that for small nonlinear damping \(\kappa >0\) stationary spatially periodic solutions exist on branches that bifurcate from constant solutions whereas all nonconstant stationary \(2\pi \)-periodic solutions disappear when the damping parameter \(\kappa \) exceeds a critical value. These results apply both for normal (\(d<0\)) and anomalous (\(d>0\)) dispersion. For the case of the real line we show by the Implicit Function Theorem that for small nonlinear damping \(\kappa >0\) and large detuning \(\zeta \gg 1\) and large forcing \(f\gg 1\) strongly localized, bright solitary stationary solutions exist in the case of anomalous dispersion \(d>0\). These results are achieved by using techniques from bifurcation and continuation theory and by proving a convergence result for solutions of the time-dependent Lugiato–Lefever equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chembo, Y.K., Yu, N.: Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010)

    Article  Google Scholar 

  2. Chembo, Y.K., Menyuk, C.R.: Spatiotemporal Lugiato–Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A 87, 053852 (2013)

    Article  Google Scholar 

  3. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  Google Scholar 

  4. Delcey, L., Haragus, M.: Instabilities of periodic waves for the Lugiato–Lefever equation. Rev. Roum. Math. Pures Appl. 63(4), 377–399 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Delcey, L., Haragus, M.: Periodic waves of the Lugiato–Lefever equation at the onset of Turing instability. Philos. Trans. R. Soc. A 376(2117), 20170188, 21 (2018)

    Article  MathSciNet  Google Scholar 

  6. Diddams, S.A., Udem, T., Bergquist, J.C., Curtis, E.A., Drullinger, R.E., Hollberg, L., Itano, W.M., Lee, W.D., Oates, C.W., Vogel, K.R., Wineland, D.J., Reichert, J., Holzwarth, R.: An optical clock based on a single trapped 199 Hg+ ion. Science (New York, N.Y.) 24(13), 881–883 (1999)

    Google Scholar 

  7. Gärtner, J., Trocha, P., Mandel, R., Koos, C., Jahnke, T., Reichel, W.: Bandwidth and conversion efficiency analysis of dissipative Kerr soliton frequency combs based on bifurcation theory. Phys. Rev. A 100, 033819 (2019)

    Article  Google Scholar 

  8. Godey, C.: A bifurcation analysis for the Lugiato–Lefever equation. Eur. Phys. J. D 71(5), 131 (2017)

    Article  Google Scholar 

  9. Godey, C., Balakireva, I.V., Coillet, A., Chembo, Y.K.: Stability analysis of the spatiotemporal Lugiato–Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014)

    Article  Google Scholar 

  10. Hakkaev, S., Stanislavova, M., Stefanov, A.G.: On the generation of stable Kerr frequency combs in the Lugiato–Lefever model of periodic optical waveguides. SIAM J. Appl. Math. 79(2), 477–505 (2019)

    Article  MathSciNet  Google Scholar 

  11. Hannes de, W.H., Dohnal, T., Rademacher, J.D.M., Uecker, H., Wetzel, D: pde2path2.9 - quickstart guide and reference card. Technical report, Institut für Mathematik, Universität Oldenburg. http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/tuts/qsrc.pdf (2020)

  12. Hansson, T., Wabnitz, S.: Dynamics of microresonator frequency comb generation: models and stability. Nanophotonics 5(2), 231–243 (2016)

    Article  Google Scholar 

  13. Herr, T., Brasch, V., Jost, J., Wang, C.Y., Kondratiev, N.M., Gorodetsky, M.L., Kippenberg, T.J.: Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014)

    Article  Google Scholar 

  14. Herr, T., Hartinger, K., Riemensberger, J., Wang, C.Y., Gavartin, E., Holzwarth, R., Gorodetsky, M.L., Kippenberg, T.J.: Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photon. 6, 480–487 (2012)

    Article  Google Scholar 

  15. Hislop, P.D., Sigal, I.M. (1996). Introduction to spectral theory, volume 113 of Applied Mathematical Sciences. With Applications to Schrödinger Operators. Springer, New York

  16. Jahnke, T., Mikl, M., Schnaubelt, R.: Strang splitting for a semilinear Schrödinger equation with damping and forcing. J. Math. Anal. Appl. 455(2), 1051–1071 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kielhöfer, H. (2012). Bifurcation theory, volume 156 of Applied Mathematical Sciences, 2nd edn. An Introduction with Applications to Partial Differential Equations. Springer, New York

  18. Lau, R.K.W., Michael R. E., L., Yoshitomo, O., Alexander L., G.: Effects of multiphoton absorption on parametric comb generation in silicon microresonators. Opt. Lett. 40(12), 2778–2781 (2015)

    Article  Google Scholar 

  19. Lugiato, L.A., Lefever, R.: Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209–2211 (1987)

    Article  MathSciNet  Google Scholar 

  20. Mandel, R.: Global secondary bifurcation, symmetry breaking and period-doubling. Topol. Methods Nonlinear Anal. 53(2), 779–800 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Mandel, R., Reichel, W.: A priori bounds and global bifurcation results for frequency combs modeled by the Lugiato–Lefever equation. SIAM J. Appl. Math. 77(1), 315–345 (2017)

    Article  MathSciNet  Google Scholar 

  22. Marin-Palomo, P., Kemal, J.N., Karpov, M., Kordts, A., Pfeifle, J., Pfeiffer, M.H.P., Trocha, P., Wolf, S., Brasch, V., Anderson, M.H., Rosenberger, R., Vijayan, K., Freude, W., Kippenberg, T.J., Koos, C.: Microresonator-based solitons for massively parallel coherent optical communications. Nature 546(7657), 274–279 (2017)

    Article  Google Scholar 

  23. Miyaji, T., Ohnishi, I., Tsutsumi, Y.: Bifurcation analysis to the Lugiato–Lefever equation in one space dimension. Phys. D 239(23–24), 2066–2083 (2010)

    Article  MathSciNet  Google Scholar 

  24. Miyaji, T., Ohnishi, I., Tsutsumi, Y.: Stability of a stationary solution for the Lugiato–Lefever equation. Tohoku Math. J. (2) 63(4), 651–663 (2011)

    Article  MathSciNet  Google Scholar 

  25. Miyaji, T., Ohnishi, I., Tsutsumi, Y.: Erratum: stability of a stationary solution for the Lugiato–Lefever equation. Tohoku Math. J. (3) 72(3), 487–492 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Miyaji, T., Tsutsumi, Y.: Existence of global solutions and global attractor for the third order Lugiato–Lefever equation on \({\bf T}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 34(7), 1707–1725 (2017)

    Article  MathSciNet  Google Scholar 

  27. Miyaji, T., Tsutsumi, Y.: Steady-state mode interactions of radially symmetric modes for the Lugiato–Lefever equation on a disk. Commun. Pure Appl. Anal. 17(4), 1633–1650 (2018)

    Article  MathSciNet  Google Scholar 

  28. Parra-Rivas, P., Gomila, D., Gelens, L., Knobloch, E.: Bifurcation structure of localized states in the Lugiato–Lefever equation with anomalous dispersion. Phys. Rev. E 97(4), 042204, 20 (2018)

    Article  MathSciNet  Google Scholar 

  29. Parra-Rivas, P., Gomila, D., Matias, M.A., Coen, S., Gelens, L.: Dynamics of localized and patterned structures in the Lugiato–Lefever equation determine the stability and shape of optical frequency combs. Phys. Rev. A 89, 043813 (2014)

    Article  Google Scholar 

  30. Parra-Rivas, P., Knobloch, E., Gomila, D., Gelens, L.: Dark solitons in the Lugiato–Lefever equation with normal dispersion. Phys. Rev. A 93(6), 1–17 (2016)

    Article  Google Scholar 

  31. Pfeifle, J., Brasch, V., Lauermann, M., Yu, Y., Wegner, D., Herr, T., Hartinger, K., Schindler, P., Li, J., Hillerkuss, D., Schmogrow, R., Weimann, C., Holzwarth, R., Freude, W., Leuthold, J., Kippenberg, T.J., Koos, C.: Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photon. 8, 375–380 (2014)

    Article  Google Scholar 

  32. Pfeifle, J., Coillet, A., Henriet, R., Saleh, K., Schindler, P., Weimann, C., Freude, W., Balakireva, I.V., Larger, L., Koos, C., Chembo, Y.K.: Optimally coherent Kerr combs generated with crystalline whispering gallery mode resonators for ultrahigh capacity fiber communications. Phys. Rev. Lett. 114(9), 1–5 (2015)

    Article  Google Scholar 

  33. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  Google Scholar 

  34. Stanislavova, M., Stefanov, A.G.: Asymptotic stability for spectrally stable Lugiato–Lefever solitons in periodic waveguides. J. Math. Phys. 59(10), 101502, 12 (2018)

    Article  MathSciNet  Google Scholar 

  35. Suh, M.-G., Vahala, K.: Soliton microcomb range measurement. Science 887, 884–887 (2017)

    Google Scholar 

  36. Trocha, P., Karpov, M., Ganin, D., Pfeiffer, M.H.P., Kordts, A., Wolf, S., Krockenberger, J., Marin-Palomo, P., Weimann, C., Randel, S., Freude, W., Kippenberg, T.J., Koos, C.: Ultrafast optical ranging using microresonator soliton frequency combs. Science 359(6378), 887–891 (2018)

    Article  Google Scholar 

  37. Udem, T., Holzwarth, R., Hänsch, T.W.: Optical frequency metrology. Nature 416(6877), 233–237 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 258734477—SFB 1173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Mandel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gärtner, J., Mandel, R. & Reichel, W. The Lugiato–Lefever Equation with Nonlinear Damping Caused by Two Photon Absorption. J Dyn Diff Equat 34, 2201–2227 (2022). https://doi.org/10.1007/s10884-021-09943-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09943-x

Keywords

Mathematics Subject Classification

Navigation