Skip to main content
Log in

Global Dynamics of a Two Species Competition Model in Open Stream Environments

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with a Lotka–Volterra competition system which describes the dynamics of two aquatic species in a river with unidirectional water flow. It is assumed that two species are identical except their movement strategies distinguished by diffusion and advection rates. Assume further that the downstream end of the river is open, then at this boundary there is always a net loss of individuals incurred by water flow. Our final results suggest that when the downstream loss is small, the strategy of a combination of faster diffusion but smaller advection is always beneficial for species to win the competition; while the movement of both faster diffusion and advection can be favorable or unfavorable depending on the gap between two advection rates. Some different dynamics are illustrated when the downstream loss becomes severe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anholt, B.R.: Density dependence resolves the stream drift paradox. Ecology 76, 2235–2239 (1995)

    Article  Google Scholar 

  2. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Series in Mathematical and Computational Biology. Wiley, Chichester (2003)

    MATH  Google Scholar 

  3. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2001)

    MATH  Google Scholar 

  4. He, X., Ni, W.-M.: Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I. Commun. Pure. Appl. Math. 69, 981–1014 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hershey, A.E., Pastor, J., Peterson, B.J., Kling, G.W.: Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river. Ecology 74, 2315–2325 (1993)

    Article  Google Scholar 

  6. Hess, P., Lazer, C,A.: On an abstract competition model and applications. Nonlinear Anal. T.M.A 16, 917–940 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hsu, S.-B., Smith, H., Waltman, P.: Competitive exclusion and coexistence for competitive systems on ordered Banach spaces. Trans. Am. Math. Soc. 348, 4083–4094 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kowalevski, S.: Zur theorie der partiellen differentialgleichung. J. Reine Angew. Math. 80, 1–32 (1875)

    MathSciNet  Google Scholar 

  9. Krein, M.G.: Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat. Nauk (N. S.) 3, 3–95 (1948)

    MathSciNet  MATH  Google Scholar 

  10. Lam, K.-Y., Lou, Y., Lutscher, F.: Evolution of dispersal in closed advective environments. J. Biol. Dyn. 9, 188–212 (2015)

    Article  MathSciNet  Google Scholar 

  11. Lou, Y., Lutscher, F.: Evolution of dispersal in open advective environments. J. Math. Biol. 69, 1319–1342 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lou, Y., Zhou, P.: Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions. J. Differ. Equat. 259, 141–171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lou, Y., Xiao, D.M., Zhou, P.: Qualitative analysis for a Lotka–Volterra competition system in advective homogeneous environment. Discret. Contin. Dyn. Syst. A 36, 953–969 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Lutscher, F., Lewis, M.A., McCauley, E.: Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol. 68, 2129–2160 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lutscher, F., McCauley, E., Lewis, M.A.: Spatial patterns and coexistence mechanisms in rivers. Theor. Popul. Biol. 71, 267–277 (2007)

    Article  MATH  Google Scholar 

  16. Lutscher, F., Pachepsky, E., Lewis, M.A.: The effect of dispersal patterns on stream populations. SIAM Rev. 47, 749–772 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mckenzie, H.W., Jin, Y., Jacobsen, J., Lewis, M.A.: \(R_0\) analysis of a spatiotemporal model for a stream population. SIAM J. Appl. Dyn. Syst. 11, 567–596 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Müller, K.: Investigations on the Organic Drift in North Swedish Streams, Technial Report 34, Institute of Freshwater Research, Drottningholm, Sweden (1954)

  19. Müller, K.: The colonization cycle of freshwater insects. Oecologica 53, 202–207 (1982)

    Article  Google Scholar 

  20. Pachepsky, E., Lutscher, F., Nisbet, R.M., Lewis, M.A.: Persistence, spread and the drift paradox. Theor. Popul. Biol. 67, 61–73 (2005)

    Article  MATH  Google Scholar 

  21. Smith, H.: Monotone Dynamical System. An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1995)

    Google Scholar 

  22. Speirs, D.C., Gurney, W.S.C.: Population persistence in rivers and estuaries. Ecology 82, 1219–1237 (2001)

    Article  Google Scholar 

  23. Trimbee, A.M., Harris, G.P.: Use of time-series analysis to demonstrate advection rates of different variables in a small lake. J. Plankton Res. 5, 819–833 (1983)

    Article  Google Scholar 

  24. Vasilyeva, O., Lutscher, F.: Population dynamics in rivers: analysis of steady states. Can. Appl. Math. Q. 18, 439–469 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Waters, T.F.: The drift of stream insects. Ann. Rev. Entomol. 17, 253–272 (1972)

    Article  Google Scholar 

  26. Zhao, X.-Q.: Dynamical Systems in Population Biology. Springer, New York (2003)

    Book  MATH  Google Scholar 

  27. Zhao, X.-Q., Zhou, P.: On a Lotka–Volterra competition model: the effects of advection and spatial variation. Calc. Var. Partial Differ. Equ. 55, 73 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, P.: On a Lotka–Volterra competition system: diffusion vs advection. Calc. Var. Partial Differ. Equ. 55, 137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Zhou’s research is supported in part by the NSF of China (#11571363) and the AARMS Postdoctoral Fellowship,  and Zhao’s research is supported in part by the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qiang Zhao.

Appendix

Appendix

Lemma 6.1

Assume that \(d_1>d_2>0\), \(\alpha _1>\alpha _2>0\), and \(1\ge b_1\ge b_ 2>0\). Then system (1.5) has no co-existence steady state when \(\alpha _2\) is close to but bigger than \(\frac{d_2}{d_1}\alpha _1\), or \(\alpha _2\) is close to but smaller than \(\alpha _1\).

Proof

Arguing indirectly, we suppose that when \(\alpha _2\) is close to but bigger than \(\frac{d_2}{d_1}\alpha _1\), there is a co-existence steady state denoted by \((u^{\alpha _2}, v^{\alpha _2})\). By elliptic regularity [3], passing to a subsequence if necessary, we may assume that as \(\alpha _2\rightarrow (\frac{d_2}{d_1}\alpha _1)^{+}\), \((u^{\alpha _2}, v^{\alpha _2})\rightarrow (u^*, v^*)\) in \(C^2([0, L])\), where \(u^*, v^*\ge 0\) and satisfy

$$\begin{aligned} \left\{ \begin{array}{lll} [d_1u^*_{xx}-\alpha _1u^*_x]+u^*[r-u^*-v^*]=0,\; &{} 0<x<L,\\ \frac{d_2}{d_1}[d_1v^*_{xx}-\alpha _1v^*_x]+v^*[r-u^*-v^*]=0,\; &{} 0<x<L,\\ d_1u^*_x(0)-\alpha _1u^*(0)=d_1v^*_x(x)-\alpha _1v^*_x(0)=0,\\ d_1u^*_x(L)-\alpha _1u^*(L)=-b_1\alpha _1u^*(L),\\ d_1v^*_x(L)-\alpha _1v^*(L)=-b_2\alpha _1v^*(L). \end{array} \right. \end{aligned}$$

By Lemma 4.6, \(u^*, v^*>0\) in [0, L] cannot happen. Hence,

$$\begin{aligned} \text {either}\ u^*=v^*=0,\ \text {or}\ v^*>0=u^*,\ \text {or}\ u^*>0=v^*. \end{aligned}$$
(6.1)

If \(u^*=v^*=0\), let \(\widehat{u}^{\alpha _2}=\frac{u^{\alpha _2}}{\Vert u^{\alpha _2}\Vert _{L^{\infty }}}\) and \(\widehat{v}^{\alpha _2}=\frac{v^{\alpha _2}}{\Vert v^{\alpha _2}\Vert _{L^{\infty }}}\). Then, using the elliptic regularity again, we may assume that \((\widehat{u}^{\alpha _2}, \widehat{v}^{\alpha _2})\rightarrow (\widehat{u}, \widehat{v})\) in \(C^2([0, L])\) as \(\alpha _2\rightarrow (\frac{d_2}{d_1}\alpha _1)^{+}\), where \(\widehat{u}, \widehat{v}>0\) (due to \(\Vert \widehat{u}\Vert _{L^{\infty }} =\Vert \widehat{v}\Vert _{L^{\infty }}=1\)) and satisfy

$$\begin{aligned} \left\{ \begin{array}{lll} [d_1\widehat{u}_{xx}-\alpha _1\widehat{u}_x]+\widehat{u}r=0,\; &{} 0<x<L,\\ \frac{d_2}{d_1}[d_1\widehat{v}_{xx}-\alpha _1\widehat{v}_x]+\widehat{v}r=0,\; &{} 0<x<L,\\ d_1\widehat{u}_x(0)-\alpha _1\widehat{u}(0)=d_1\widehat{v}_x(0)-\alpha _1\widehat{v}_x(0)=0,\\ d_1\widehat{u}_x(L)-\alpha _1\widehat{u}(L)=-b_1\alpha _1\widehat{u}(L),\\ d_1\widehat{v}_x(L)-\alpha _1\widehat{v}(L)=-b_2\alpha _1\widehat{v}(L), \end{array} \right. \end{aligned}$$
(6.2)

which can be rearranged as

$$\begin{aligned} \left\{ \begin{array}{lll} d_1\left\{ e^{\frac{\alpha _1}{d_1}x}\left[ e^{-\frac{\alpha _1}{d_1}x}\widehat{u}\right] _x\right\} _x+\widehat{u}r=0,\; &{} 0<x<L,\\ d_1\left\{ e^{\frac{\alpha _1}{d_1}x}\left[ e^{-\frac{\alpha _1}{d_1}x}\widehat{v}\right] _x\right\} _x+\widehat{v}r= \left[ 1-\frac{d_2}{d_1}\right] [d_1\widehat{v}_{xx}-\alpha _1\widehat{v}_x],\; &{} 0<x<L,\\ d_1\widehat{u}_x(0)-\alpha _1\widehat{u}(0)=d_1\widehat{v}_x(0)-\alpha _1\widehat{v}_x(0)=0,\\ d_1\widehat{u}_x(L)-\alpha _1\widehat{u}(L)=-b_1\alpha _1\widehat{u}(L),\\ d_1\widehat{v}_x(L)-\alpha _1\widehat{v}(L)=-b_2\alpha _1\widehat{v}(L). \end{array} \right. \end{aligned}$$
(6.3)

Using the same idea as in Lemma 2.1, we can derive from (6.2) that

$$\begin{aligned} 0<\frac{\widehat{u}_x}{\widehat{u}}<\frac{\alpha _1}{d_1}\ \ \text {and}\ \ 0<\frac{\widehat{v}_x}{\widehat{v}}<\frac{\alpha _1}{d_1}\ \ \text {in}\ \ (0, L). \end{aligned}$$
(6.4)

Moreover, multiplying the first equation in (6.3) by \(e^{-\frac{\alpha _1}{d_1}x}\widehat{v}\) and the second one by \(e^{-\frac{\alpha _1}{d_1}x}\widehat{u}\), subtracting the resulting equations, and then integrating over [0, L], one finally obtains

$$\begin{aligned} \begin{aligned} 0<&\ \left[ b_1-\frac{d_2}{d_1}b_2\right] \cdot \alpha _1\cdot \widehat{u}(L)\cdot \widehat{v}(L)\cdot e^{-\frac{\alpha _1}{d_1}L}\\ =&\ [d_2-d_1]\int _{0}^{L}\left[ \frac{\widehat{v}_{x}}{\widehat{v}}-\frac{\alpha _1}{d_1}\right] \cdot \left[ \frac{\widehat{u}_{x}}{\widehat{u}}-\frac{\alpha _1}{d_1}\right] \cdot e^{-\frac{\alpha _1}{d_1}x}\cdot \widehat{u}\cdot \widehat{v}\text {d}x\\ <&\ 0, \end{aligned} \end{aligned}$$

where the estimate in (6.4) is used. This contradiction shows that \(u^*=v^*=0\) cannot happen.

If \(u^*>0=v^*\), then \(u^*\) is the unique positive solution of

$$\begin{aligned} \left\{ \begin{array}{lll} [d_1u^*_{xx}-\alpha _1u^*_x]+u^*[r-u^*]=0,\; &{} 0<x<L,\\ d_1u^*_x(0)-\alpha _1u^*(0)=0,\\ d_1u^*_x(L)-\alpha _1u^*(L)=-b_1\alpha _1u^*(L) \end{array} \right. \end{aligned}$$

and \(\widehat{v}^{\alpha _2}=\frac{v^{\alpha _2}}{\Vert v^{\alpha _2}\Vert _{L^{\infty }}}\) defined above now converges to \(\widehat{v}\) satisfying

$$\begin{aligned} \left\{ \begin{array}{lll} [d_1\widehat{v}_{xx}-\alpha _1\widehat{v}_x]+\widehat{v}[r-u^*]=[1-\frac{d_2}{d_1}][d_1\widehat{v}_{xx}-\alpha _1\widehat{v}_x],\; &{} 0<x<L,\\ d_1\widehat{v}_x(0)-\alpha _1\widehat{v}(0)=0,\\ d_1\widehat{v}_x(L)-\alpha _1\widehat{v}(L)=-b_2\alpha _1\widehat{v}(L). \end{array} \right. \end{aligned}$$

By Corollary 2.1, \(0<\frac{u^*_x}{u^*}<\frac{\alpha _1}{d_1}\) in (0, L), and by using the same argument as in Lemma 2.1, one can derive \(\frac{\widehat{v}_x}{\widehat{v}}<\frac{\alpha _1}{d_1}\) in (0, L) where the fact \(u^*_x>0\) was used. Next, one can use the same idea as above to deduce a contradiction, which shows that \(u^*>0=v^*\) is impossible.

Clearly, the case of \(v^*>0=u^*\) can be excluded in a similar manner. But this leads to a contradiction with (6.1). Hence, there is no co-existence steady state when \(\alpha _2\) is close to but bigger than \(\frac{d_2}{d_1}\alpha _1\).

For the situation when \(\alpha _2\) is close to but smaller than \(\alpha _1\), we can prove the result in the same spirit as above with some obvious modifications. \(\square \)

Lemma 6.2

Given \(d_1>d_2>0\), \(\alpha _1>0\), and \(1\ge b_1\ge b_ 2>0\). Assume that both \((\widetilde{u}, 0)\) and \((0, \widetilde{v})\) exist for any \(\alpha _2\in (0, \alpha _1)\). Then there must exist \(\alpha _2\in [\mu _1, \mu _2]\) such that system (1.5) admits a co-existence steady state.

Proof

We first explain how to guarantee the above assumption. Given \(d_1>d_2>0\), \(\alpha _1>0\) and \(1\ge b_1\ge b_ 2>0\). For any \(\alpha _2\in (0, \alpha _1)\), since \(L_{1, 2}^*\) are increasing functions in \(\alpha \) [12, Lemmas 2.1, 2.2], we can choose suitably large r and L (not depending on \(\alpha _2\)) to satisfy the sufficient and necessary condition given in Proposition 2.1, and thus both \((\widetilde{u}, 0)\) and \((0, \widetilde{v})\) exist for any \(\alpha _2\in (0, \alpha _1)\).

Next, we use an argument developed in [27] to finish this proof. Fix \(\nu _1\in (0, \mu _1)\) and \(\nu _2\in (\mu _2, \alpha _1)\), and define

$$\begin{aligned} \Gamma :=(\nu _1, \nu _2). \end{aligned}$$

Let \(X^+\) be the set of all non-negative continuous functions from \(\mathbb {R}\) to \(\mathbb {R}\) and define \(K:=X^+\times (-X^+)\) as the usual cone for the study of competitive systems with nonempty interior given by \(\text {Int} K=\text {Int} X^+\times (-\text {Int} X^+)\). Let \(\le _{K}, <_{K}, \ll _{K}\) denote the partial order relations generated by K (see, e.g., definitions in [7]). Moreover, for any \(\alpha _2\in \Gamma \), we denote by \(T_{t}^{\alpha _2}\) the continuous semi-flow generated by system (1.5).

Suppose to the contrary that system (1.5) has no co-existence steady state for any \(\alpha _2\in \Gamma \). Then in view of [7, Theorem B], the dynamics of system (1.5) is clear if initial conditions are confined in

$$\begin{aligned} \Sigma _{\alpha _2}:=\{(u_0, v_0): (0, \widetilde{v}_{\alpha _2})\le _{K}(u_0, v_0)\le _{K}(\widetilde{u}, 0)\ \text {with}\ u_0, v_0\not \equiv 0,\} \end{aligned}$$

where we use \(\widetilde{v}_{\alpha _2}\) instead of \(\widetilde{v}\) to emphasize the dependence on \(\alpha _2\). More specifically, if we define

$$\begin{aligned} \Gamma _1:=\{\alpha _2\in \Gamma : (\widetilde{u}, 0)\ \text {is globally attractive for any}\ (u_0, v_0)\ \text {in}\ \Sigma _{\alpha _2}\}, \end{aligned}$$

and

$$\begin{aligned} \Gamma _2:=\{\alpha _2\in \Gamma : (0, \widetilde{v}_{\alpha _2})\ \text {is globally attractive for any}\ (u_0, v_0)\ \text {in}\ \Sigma _{\alpha _2}\}, \end{aligned}$$

then

$$\begin{aligned} \Gamma _1\cap \Gamma _2=\emptyset \ \ \text {and}\ \ \Gamma =\Gamma _1\cup \Gamma _2. \end{aligned}$$
(6.5)

We claim that both \(\Gamma _1\) and \(\Gamma _2\) are open. In fact, for any given \(\alpha _2^0\in \Gamma _1\), we choose a point \((u_0^1, v_0^1)\) in \(\Sigma _{\alpha _2^0}\) satisfying \((0, \widetilde{v}_{\alpha _2^0})\ll _{K}(u_0^1, v_0^1)\ll _{K}(\widetilde{u}, 0)\). By the continuous dependence of \(\widetilde{v}_{\alpha _2}\) on \(\alpha _2\), there exists \(\delta _1>0\) small such that for all \(|\alpha _2-\alpha _2^0|<\delta _1\),

$$\begin{aligned} (0, \widetilde{v}_{\alpha _2})\ll _{K}(u_0^1, v_0^1)\ll _{K}(\widetilde{u}, 0). \end{aligned}$$

Since \(T_{t}^{\alpha _2^0}(u_0^1, v_0^1)\rightarrow (\widetilde{u}, 0)\gg _K (u_0^1, v_0^1)\) as \(t\rightarrow \infty \), there exists a large time \(t_0>0\) such that

$$\begin{aligned} T_{t_0}^{\alpha _2^0}(u_0^1, v_0^1)\gg _K(u_0^1, v_0^1). \end{aligned}$$

Using the continuous dependence of \(T_{t_0}^{\alpha _2}(u_0^1, v_0^1)\) on \(\alpha _2\), one finds that there exists \(0<\delta _2<\delta _1\) such that for all \(|\alpha _2-\alpha _2^0|<\delta _2\),

$$\begin{aligned} T_{t_0}^{\alpha _2}(u_0^1, v_0^1)\gg _K(u_0^1, v_0^1)\gg _K(0, \widetilde{v}_{\alpha _2}), \end{aligned}$$

which implies that \((\alpha _2^0-\delta _2, \alpha _2^0+\delta _2)\cap \Gamma _2=\emptyset \), and hence, \((\alpha _2^0-\delta _2, \alpha _2^0+\delta _2)\subset \Gamma _1\). Similarly, one can verify that \(\Gamma _2\) is also open. This establishes the above claim.

Clearly, both \(\Gamma _1\) and \(\Gamma _2\) are non-empty since \((\nu _1, \mu _1)\subset \Gamma _1\) and \((\mu _2, \nu _2)\subset \Gamma _2\). Combining this fact, the above claim, and the decomposition in (6.5) together, we obtain a contradiction. Hence, for some \(\alpha _2\in \Gamma \), system (1.5) has a co-existence steady state. Actually, such \(\alpha _2\) must be in \([\mu _1, \mu _2]\) in view of the global dynamics described in statements (1) and (2) in Theorem 1.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Zhao, XQ. Global Dynamics of a Two Species Competition Model in Open Stream Environments. J Dyn Diff Equat 30, 613–636 (2018). https://doi.org/10.1007/s10884-016-9562-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-016-9562-2

Keywords

Mathematics Subject Classification

Navigation