Skip to main content
Log in

The Blow-Up Rate for Strongly Perturbed Semilinear Wave Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider in this paper a large class of perturbed semilinear wave equation with subconformal power nonlinearity. In particular, we allow log perturbations of the main source. We derive a Lyapunov functional in similarity variables and use it to derive the blow-up rate. Throughout this work, we use some techniques developped for the unperturbed case studied by Merle and Zaag (Int. Math. Res. Notices, 19(1):1127–1156, 2005) together with ideas introduced by Hamza and Zaag in (Nonlinearity, 25(9):2759–2773, 2012) for a class of perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Blow up for nonlinear hyperbolic equations. In Volume 17 of Progress in Nonlinear Differential Equations and their Applications, pages Birkhäuser Boston Inc., Boston, MA (1995)

  2. Alinhac, S.: A minicourse on global existence and blow-up of classical solutions to multidimensional quasilinear wave equations. In Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002), pages Exp. No. I, 33. University of Nantes, Nantes (2002)

  3. Antonini, C., Merle, F.: Optimal bounds on positive blow-up solutions for a semilinear wave equation. Int. Math. Res. Notices 21, 1141–1167 (2001)

    Article  MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Friedman, A.: Differentiability of the blow-up curve for one dimensionel nonlinear wave equations. Arch. Rational Mech. Anal. 91(1), 83–98 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L.A., Friedman, A.: The blow-up boundary for nonlinear wave equations. Trans. Am. Math. Soc. 297(1), 223–241 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Donninger, R., Schlag, W.: Numerical study of the blow-up/global existence dichotomy for the focusing cubic nonlinear Klein–Gordan equation. Nonlinearity 24, 2547–2562 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Donninger, R., Schörkhuber, B.: Stable self-similar blow-up for energy subcritical wave equation. Dyn. Partial Differ. Equ 9, 63–87 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Donninger, R., Schörkhuber, B.: Stable blow-up dynamics for energy supercritical wave equations. Trans. Am. Math. Soc 366(4), 2167–2189 (2014)

    Article  MATH  Google Scholar 

  9. Hamza, M.A., Zaag, H.: A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations. Nonlinearity 25(9), 2759–2773 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hamza, M.A., Zaag, H.: Lyapunov functional and blow-up results for a class of perturbations of semilinear wave equations in the critical case. J. Hyperbolic Differ. Equ. 9(2), 195–221 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hamza, M.A., Zaag, H.: Blow-up behavior for the Klein–Gordon and other perturbed semilinear wave equations. Bull. Sci. Math. 137, 1087–1109 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kichenassamy, S., Littman, W.: Blow-up surfaces for nonlinear wave equations. I. Commun. Partial Differ. Equ. 18(3–4), 431–452 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kichenassamy, S., Littman, W.: Blow-up surfaces for nonlinear wave equations. II. Commun. Partial Differ. Equ. 18(11), 1869–1899 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Killip, R., Stoval, B., Visan, M.: Blow-up behavior for the nonlinear Klein–Gordon equation. (http://arxiv.org/abs/1203.4886)

  15. Killip, R., Visan, M.: Smooth solutions to the nonlinear wave equation can blow-up on Cantor sets. (http://arxiv.org/abs/1103.5257v1) (2011)

  16. Levine, H.A.: Instability and non-existence of global solutions to nonlinear wave equations of the form \(Pu_{tt}=-Au+{\cal F}(u)\). Trans. Am. Math. Soc. 192, 1–21 (1974)

    MATH  Google Scholar 

  17. Levine, H.A., Todorova, G.: Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy. SIAM J. Math. Anal. 5(3), 793–805 (2001)

    MathSciNet  Google Scholar 

  18. Merle, F., Zaag, H.: Determination of the blow-up rate for the semilinear wave equation. Am. J. Math. 125(5), 1147–1164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Merle, F., Zaag, H.: Blow-up rate near the blow-up surface for semilinear wave equation. Int. Math. Res. Notices 19(1), 1127–1156 (2005)

    Article  MathSciNet  Google Scholar 

  20. Merle, F., Zaag, H.: Determination of the blow-up rate for a critical semilinear wave equation. Math. Ann. 331(2), 395–416 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Merle, F., Zaag, H.: Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253(1), 43–121 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Merle, F., Zaag, H.: Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation. Commun. Math. Phys. 282(1), 55–86 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Merle, F., Zaag, H.: Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension. Am. J. Math. 134(3), 581–648 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nakanishi, K., Schlag, W.: Invariant Manifolds and Dispersive Hamiltonian Evolution Equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2011)

    Book  MATH  Google Scholar 

  25. Tao, T.: Global regularity for a logarithmically supercritical defocusing nonlinear wave equation for spherically symmetric data. J. Hyperbolic Differ. Equ. 4(1), 259–265 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Todorova, G.: Cauchy problem for a non linear wave equation with non linear damping and source terms. Nonlinear Anal. 41, 891–905 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Whitham, G.B.: Linear and Nonlinear Waves, Pure and Applied Mathematics (New York). Wiley, New York (1999). Reprint of the 1974 original, A Wiley-Interscience Publication

    Book  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor Hatem Zaag for many fruitful discussions. The authors are also grateful to the referee for his careful reading of the manuscript and for his valuable remarks. The first author is partially supported by the ERC Advanced Grant No. 291214, BLOWDISOL during his visit to LAGA, Univ P13 in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hamza.

Appendix: Blow-Up Dynamics for the Associated ODE

Appendix: Blow-Up Dynamics for the Associated ODE

In this appendix, we consider the following ODE:

$$\begin{aligned} u^{\prime \prime }=|u|^{p-1}u+f(u), \end{aligned}$$
(4.1)

with either \(f(u)\sim |u|^q,\,q<p\) as \( u\rightarrow \infty \) or \(f(u)\sim \frac{|u|^p}{(\log (2+u^2))^a}\) , \(a>1\) as \( u\rightarrow \infty \).

In this proposition, we give two terms in the solution’s expansion near blow-up

Proposition 3.1

Let \(u\) a solution of (4.1) that blows-up in some finite time \(T\), the blow-up profile of \(u\) near \(T\) is given by the following quantities:

  1. (i)

    If \(f(u)\sim |u|^q,\) then we have

    $$\begin{aligned} u(t)- \frac{\kappa }{(T-t)^{\frac{2}{p-1}}}\sim \frac{A}{(T-t)^{\frac{2}{p-1}-\mu }}, \qquad \mathrm as \quad t\rightarrow T^-, \end{aligned}$$
    (4.2)

    where \(\mu >0\) and \(A\in {\mathbb {R}}\).

  2. (ii)

    If \(f(u)\sim \frac{|u|^p}{(\log (2+u^2))^a},\) then we have

    $$\begin{aligned} u(t)- \frac{\kappa }{(T-t)^{\frac{2}{p-1}}}\sim \frac{\kappa (p-1)^{a-1}}{4^a(T-t)^{\frac{2}{p-1}}(-\log (T-t))^a},\qquad \mathrm as \quad t\rightarrow T^-. \end{aligned}$$
    (4.3)

Remark 4

If \(f(u)\equiv 0,\) then we have

$$\begin{aligned} u(t)- \frac{\kappa }{(T-t)^{\frac{2}{p-1}}}\sim \frac{A}{(T-t)^{\frac{2}{p-1}-2}}, \qquad \mathrm as \quad t\rightarrow T^-. \end{aligned}$$

Proof

First it is clear that \(u(t)\sim \frac{\kappa }{(T-t)^{\frac{2}{p-1}}},\) as \(t\rightarrow T^-,\) with \(\kappa =(\frac{2p+2}{(p-1)^2})^{\frac{1}{p-1}}\). By using the following change of variables:

$$\begin{aligned} s=-\log (T-t), \quad u(t)=\frac{1}{(T-t)^{\frac{2}{p-1}}}w(-\log (T-t)),\quad \forall \quad t\in [0,T). \end{aligned}$$

The function \(w\) satisfies the following equation: \(\forall \quad s\ge -\log (T)\)

$$\begin{aligned} w''(s)+\frac{p+3}{p-1}w'(s)+\frac{2p+2}{(p-1)^{2}}w(s)=|w(s)|^{p-1}w(s)+e^{\frac{-2ps}{p-1}}f(e^{\frac{2s}{p-1}}w(s)). \end{aligned}$$
(4.4)

By standard arguments, we easily study the asymptotic behaviour of equation (4.4) as \( s\rightarrow \infty \) and we get (4.2) and (4.3). Which ends the proof of Proposition 3.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamza, M.A., Saidi, O. The Blow-Up Rate for Strongly Perturbed Semilinear Wave Equations. J Dyn Diff Equat 26, 1115–1131 (2014). https://doi.org/10.1007/s10884-014-9371-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9371-4

Keywords

Mathematics Subject Classification

Navigation