Skip to main content
Log in

Nekhoroshev and KAM Stabilities in Generalized Hamiltonian Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

We present some Nekhoroshev stability results for nearly integrable, generalized Hamiltonian systems, which can be odd dimensional and admit a distinct number of action and angle variables. Using a simultaneous approximation technique due to Lochak, Nekhoroshev stabilities are shown for various cases of quasi-convex generalized Hamiltonian systems along with concrete estimates on stability exponents. Discussions on KAM metric stability of generalized Hamiltonian systems are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R., Marsden J. (1978). Foundations of Mechanics, 2nd edn., Benjamin, New York

    MATH  Google Scholar 

  2. Arnold V.I. (1963). Proof of a theorem by A. N. Kolmogorov on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Usp. Mat. Nauk. 18, 13–40

    MATH  Google Scholar 

  3. Arnold V.I. (1966). Instability of dynamical systems with several degrees of freedom. Sov. Mat. Dokl. 5, 581–585

    Google Scholar 

  4. Arnold, V. I. (1978). Mathematical methods of classical mechanics (translated from Russian by Vogtmann, K., and A. Weinstein), Springer-Verlag, NewYork, Heidelberg, Berlin.

  5. Bambusi D. (1994). A Nekhoroshev-type theorem for the Pauli-Fierz model of classical electrodynamics. Ann. Inst. H. Poincaré Phys. Théor. 60, 339–371

    MATH  MathSciNet  Google Scholar 

  6. Benettin G. (2001). Applications of the Nekhoroshev theorem to celestial mechanics (Italian). Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 4(8): 71–95

    MATH  MathSciNet  Google Scholar 

  7. Benettin G., Fasso F., Guzzo M. (1998). Nekhoroshev-stability of L4 and L5 in the spatial restricted three-body problem, J. Moser at 70 (Russian). Regul. Chaotic Dyn. 3, 56–72

    Article  MATH  MathSciNet  Google Scholar 

  8. Benettin G., Galgani L., Giorgilli A. (1985). A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Celestial Mech. 37, 1–25

    Article  MATH  MathSciNet  Google Scholar 

  9. Benettin G., Gallavotti G. (1986). Stability of motion near resonances in quasi- integrable Hamiltonian systems. J. Stat. Phys. 44, 293–338

    Article  MATH  MathSciNet  Google Scholar 

  10. Benettin, G., Galgani, L., and Giorgilli, A. (1994). The dynamical foundations of classical statistical mechanics and the Boltzmann-Jeans conjecture, Seminar on Dynamical Systems (St. Petersburg, 1991). Progr. Nonlinear Differential Equations Appl., 12, Birkhäuser, Basel, 3–14.

  11. Benettin G., Hjorth P., Sempio P. (1999). Exponentially long equilibrium times in a one-dimensional collisional model of classical gas. J. Statist. Phys. 94, 871–891

    Article  MATH  MathSciNet  Google Scholar 

  12. Bessi U., Chierchia L., Valdinoci E. (2001). Upper bounds on Arnold diffusion times via Mather theory. J. Math. Pures Appl. 80(9): 105–129

    Article  MATH  MathSciNet  Google Scholar 

  13. Bogoyavlenskij, O. I. (1996). Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures. Comm. Math. Phys. 180, 529–586 : II. Theorem on symmetries and its applications. Comm. Math. Phys. 184, 301–365.

    Google Scholar 

  14. Bogoyavlenskij O.I. (1998). Extended integrability and bi-Hamiltonian systems. Comm. Math. Phys. 186, 19–51

    Article  MathSciNet  Google Scholar 

  15. Cary J.R., Littlejohn R.G. (1982). Hamiltonian mechanics and its application to magnetic field line flow. Ann. Phys. 151, 1–34

    MathSciNet  Google Scholar 

  16. Celletti A., Ferrara L. (1996). An application of the Nekhoroshev theorem to the restricted three-body problem. Cele Mech. Dynam. Astronom. 64, 261–272

    Article  MATH  MathSciNet  Google Scholar 

  17. Cong F.Z., Li Y. (1998). Existence of higher dimensional invariant tori for Hamiltonian systems. J. Math. Anal. Appl. 222, 255–267

    Article  MATH  MathSciNet  Google Scholar 

  18. Chierchia L., Gallavotti G. (1994). Drift and diffusion in phase space. Ann. Inst. H. Poincaré B 60, 1–144

    MATH  MathSciNet  Google Scholar 

  19. Chow S.-N., Li Y., Yi Y., (2002). Persistence of invariant tori on sub-manifolds in Hamiltonian systems. J. Nonl. Sci. 12, 585–617

    Article  MATH  MathSciNet  Google Scholar 

  20. Delshams A., Gutiérrez P. (1996). Effective stability and KAM theory. J. Differential Equations 128, 415–490

    Article  MATH  MathSciNet  Google Scholar 

  21. Dorfman I.Y. (1993). Dirac structures and integrability of nonlinear evolution equations. Wiley and Sons, New York

    Google Scholar 

  22. Duistermaat J.J. (1980). On global action-angle coordinates. CMAP 33, 687–706

    MATH  MathSciNet  Google Scholar 

  23. Fasso F., Guzzo M., Benettin G. (1998). Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems. Comm. Math. Phys. 197, 347–360

    Article  MATH  MathSciNet  Google Scholar 

  24. Fontich E., Martin P. (2001). Arnold diffusion in perturbations of analytic integrable Hamiltonian systems. Discrete Contin. Dyn. Syst. 7, 61–84

    MATH  MathSciNet  Google Scholar 

  25. Gallavotti G. (1998/99). Arnold’s diffusion in isochronous systems. Math. Phys. Anal. Geom. 1, 295–312

    Article  MathSciNet  Google Scholar 

  26. Giorgilli, A. (1995). Energy equipartition and Nekhoroshev-Type estimates for large systems, Hamiltonian dynamical systems (Cincinnati, OH, 1992). IMA Vol. Math. Appl., 63, Springer, New York, 147–161.

  27. Giorgilli A., Delshams A., Fontich E., Galgani L., Simó C. (1989). Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem. J. Differential Equation. 77, 167–198

    Article  MATH  MathSciNet  Google Scholar 

  28. Giorgilli A., Morbidelli A. (1997). Invariant KAM tori and global stability for Hamiltonian systems. Z. angew. Math. Phys. 48, 102–134

    Article  MATH  MathSciNet  Google Scholar 

  29. Giorgilli A., Zehnder E. (1992). Exponential stability for time dependent potentials. ZAMP 43, 827–855

    Article  MATH  MathSciNet  Google Scholar 

  30. Guzzo M. (1999). Nekhoroshev stability of quasi-integrable degenerate Hamiltonian systems. Regul. Chaotic Dyn. 4, 78–102

    Article  MATH  MathSciNet  Google Scholar 

  31. Herman M.R. (1991). Différéntiabilité optimal et contreexemples à la fermeture en topologie C des orbites récurrentes de flots hamiltoniens. C. R. Acad. Sci. Paris. Sér. I Math. 313, 49–51

    MATH  MathSciNet  Google Scholar 

  32. Herman M.R. (1991). Exemples de flots Hamiltoniens dont aucune perturbation en topologie C n’a d’orbites périodiques sur un ouvert de surfaces d’energies. C. R. Acad. Sci. Paris. Sér. I Math. 312, 989–994

    MATH  MathSciNet  Google Scholar 

  33. Hernández-Bermejo B. (2001). One solution of the 3D Jacobi identities allows determining an infinity of them. Phy. Lett. A 287, 371–378

    Article  MATH  MathSciNet  Google Scholar 

  34. Hernández-Bermejo B. (2001). New solutions of the Jacobi equations for three-dimensional Poisson structures. J. Math. Phy. 42, 4984–4996

    Article  MATH  MathSciNet  Google Scholar 

  35. Holm D.D., Wolf K.B., (1991). Lie-Poisson description of Hamiltonian ray optics. Phys. D 51, 189–199

    Article  MATH  MathSciNet  Google Scholar 

  36. Kappeler T., Makarov M. (2000). On action-angle variables for the second Poisson bracket of Kdv. Comm. Math. Phys. 214, 651–677

    Article  MATH  MathSciNet  Google Scholar 

  37. Kolmogorov A.N. (1954). On the conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk. SSSR 98, 525–530

    MathSciNet  Google Scholar 

  38. Li Y., Yi Y. (2005). Persistence of hyperbolic tori in Hamiltonian systems. J. Differential Equations 208, 344–387

    Article  MATH  MathSciNet  Google Scholar 

  39. Li, Y., and Yi, Y. (2005). On Poincaré-Treshchev tori in Hamiltonian systems. In Dumortier et al., Proceeding Equadiff 2003 World Scientific, 136–151.

  40. Li Y., Yi Y. (2002). Persistence of invariant tori in generalized Hamiltonian systems. Erg. Th. Dyn. Sys. 22, 1233–1261

    Article  MATH  MathSciNet  Google Scholar 

  41. Lochak P. (1992). Canonical perturbation theory via simultaneous approximation. Russian Math. Surveys 47, 57–133

    Article  MATH  MathSciNet  Google Scholar 

  42. Lochak P. (1993). Hamiltonian perturbation theory: periodic orbits, resonances and intermittency. Nonlinearity 6, 885–904

    Article  MATH  MathSciNet  Google Scholar 

  43. Lochak, P. (1993) Arnold Diffusion: A Compendium of Remarks and Questions, Hamiltonian Systems with Three or More Degree of Freedom (S’Agaró, 1995), NATO Adv. Sci. Inst. Ser.C Math. Phys. Sci., 533, Kluwer Acadamic. Publishers, Dordrecht, 168–183.

  44. Lochak P., Neishtadt A.I. (1992). Estimates of stability times for nearly integrable systems with quasiconvex Hamiltonian. Chaos 2, 495–499

    Article  MATH  MathSciNet  Google Scholar 

  45. Markus L., Meyer K.R. (1974). Generic Hamiltonian systems are neither integrable nor ergodic. Mem. Amer. Math. Soc. 144.

  46. Marsden J., Ratiu T. (1999). Introduction to Mechanics and Symmetry, Texts in Applied Mathematics, Vol. 17, 2nd Ed. Springer-Verlag, New York

    MATH  Google Scholar 

  47. Marsden J., Ratiu T., Weinstein A. (1984). Semi-direct products and reduction in mechanics. Trans. Am. Math. Soc. 281, 147–177

    Article  MATH  MathSciNet  Google Scholar 

  48. Marsden, J., and Weinstein, A. (2001). Comments on the history, theory, and applications of symplectic reduction. In Quantization of Singular Symplectic Quotients, (Landsman et al (ed), Birkhäer, Boston, 1–20.

  49. Marsden J., Weinstein A. (1974). Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130

    Article  MATH  MathSciNet  Google Scholar 

  50. Martin C. (1999). The Poisson structure of the Mean-Field equations in the ϕ4 theory. Ann. Phy. 271, 294–305

    Article  MATH  Google Scholar 

  51. Meyer K. R. (1973). Symmetries and integrals in mechanics. In (Peixoto ed.), Dynamical systems. Academic Press, New York, 295–273.

  52. Mezić I., Wiggins S. (1994). On the integrability and perturbations of three-dimensional fluid flows with symmetry. J. Nonl. Sci. 4, 157–194

    Article  MATH  Google Scholar 

  53. Morrison P.J. (1998). Hamiltonian description of the ideal fluid. Rev. Mod. Phy. 70, 467–521

    Article  MathSciNet  Google Scholar 

  54. Moser J. (1962). On invariant curves of area preserving mappings of an annulus. Nachr. Akad. Wiss. Gött. Math. Phys. K1, 1–20

    Google Scholar 

  55. Moser, J. (1977). Old and new applications of KAM theory, Hamiltonian systems with three or more degree of freedom (S’Agaró, 1995), NATO Adv. Sci. Inst. Ser.C Math. Phys. Sci., 533, Kluwer Acadamic Publishers Dordrecht, 184–192.

  56. Nekhoroshev, N. N. (1977). An exponential estimate of the time of stability of nearly integrable Hamiltonian systems I. Usp. Mat. Nauk, 32, 5–66; Russ. Math. Surveys 32, 1–65.

    Google Scholar 

  57. Niederman L. (2004). Exponential stability for small perturbations of steep integrable Hamiltonian systems. Erg. Th. Dyn. Sys. 24, 593–608

    Article  MATH  MathSciNet  Google Scholar 

  58. Olver P.J. (1993). Applications of Lie Groups to Differential Equations. Springer-Verlag, New York

    MATH  Google Scholar 

  59. Olver, P. J. (1987). BiHamiltonian Systems, Pitman Research Notes in Mathematics. Sleeman B. D., and Jarvis, R. J., (eds.), Ordinary and Partial Differential Equations, Longman Scientific and Technical, 176–193.

  60. Parasyuk I.O. (1984). On preservation of multidimensional invariant tori of Hamiltonian systems. Ukr. Mat. Zh. 36, 467–473

    MATH  MathSciNet  Google Scholar 

  61. Picard G., Johnston T.W. (1982). Instability cascades, Lotka-Volterra population equations, and Hamiltonian Chaos. Phys. Rev. Lett. 48, 1610–1613

    Article  MathSciNet  Google Scholar 

  62. Popov G. (2000). Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms. Ann. Henri Poincaré 1, 223–248

    Article  MATH  Google Scholar 

  63. Popov G. (2000). Invariant tori, effective stability, and quasimodes with exponentially small error terms. II. Quantum Birkhoff normal forms. Ann. Henri Poincaré 1, 249–279

    Article  MATH  Google Scholar 

  64. Pöschel J. (1993). Nekhoroshev estimates for quasiconvex Hamiltonian systems. Math. Z. 213, 495–499

    Article  Google Scholar 

  65. Rüssmann, H. (1990), Nondegeneracy in the perturbation theory of integrable dynamical systems, Number theory and dynamical systems (York, 1987), 5–18, London Math. Soc. Lecture Note Ser., 134, Cambridge University Press, Cambridge, 1989, Stochastics, Algebra and Analysis in Classical and Quantum Dynamics (Marseille, 1988), Math. Appl., 59, Kluwer Acadamic. Publishers, Dordrecht, 211–223.

  66. H. Rüssmann, Pravite communications, 2005.

  67. Sevryuk M.B. (1995). KAM-stable Hamiltonians. J. Dyn. Control Syst. 1, 351–366

    Article  MATH  MathSciNet  Google Scholar 

  68. Schmidt, W. M. (1980) Diophantine Approximation. Lecture Notes in Math. 785, Springer, New York.

  69. Weinstein A. (1983). The local structure of Poisson manifolds. J. Diff. Geometry 18, 523–557

    MATH  MathSciNet  Google Scholar 

  70. Xu J.X., You J.G., Qiu Q.J. (1997). Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–387

    Article  MATH  MathSciNet  Google Scholar 

  71. Yoccoz J.-C. (1992). Travaux de Herman sur les tores invariants. Asterisque 206, 311–344

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfei Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yi, Y. Nekhoroshev and KAM Stabilities in Generalized Hamiltonian Systems. J Dyn Diff Equat 18, 577–614 (2006). https://doi.org/10.1007/s10884-006-9025-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-006-9025-2

Keywords

1991 Mathematics Subject Classification

Navigation