Skip to main content
Log in

Parameterized Viscosity Solutions of Convex Hamiltonian Systems with Time Periodic Damping

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this article we develop an analogue of Aubry-Mather theory for time periodic dissipative equation

$$\begin{aligned} \left\{ \begin{aligned} \dot{x}&=\partial _p H(x,p,t),\\ \dot{p}&=-\partial _x H(x,p,t)-f(t)p \end{aligned} \right. \end{aligned}$$

with \((x,p,t)\in T^*M\times \mathbb {T}\) (compact manifold M without boundary). We discuss the asymptotic behaviors of viscosity solutions for the associated Hamilton-Jacobi equation

$$\begin{aligned} \partial _t u+f(t)u+H(x,\partial _x u,t)=0,\quad (x,t)\in M\times \mathbb {T}\end{aligned}$$

w.r.t. certain parameters, and analyze the meanings in controlling the global dynamics. We also discuss the prospect of applying our conclusions to many physical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Any function \(\omega \in C(M\times \mathbb {T},\mathbb {R})\) satisfying (8) is called a (viscosity) subsolution of (\(\text {HJ}_+\)) and denoted by \(\omega \prec _f L+\alpha\).

  2. absolutely continuous curves.

  3. Here \(\pi _x,\pi _t,\pi _u\) is the standard projection to the space \(M,\mathbb {T},\mathbb {R}\) respectively.

References

  1. Bensoussan A. Perturbation methods in optimal control. Wiley/Gauthier-Villars Ser. Modern Appl Math. Chichester:Wiley; 1988. translated from the French by C. Tomson.

  2. Bernard P. Connecting orbits of time dependent Lagrangian systems. Ann Inst Fourier (Grenoble). 2002;52(5):1533–68.

    Article  MathSciNet  MATH  Google Scholar 

  3. Calleja R, Celletti A, de la Llave R. A KAM theory for conformally symplectic systems: efficient algorithms and their validation. J Differential Equations. 2013;255(5):978–1049.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cannarsa P, Cheng W, Jin L, Wang K, Yan J. Herglotz’ variational principle and Lax-Oleinik evolution. J Math Pures Appl. 2020;141:99–136.

    Article  MathSciNet  MATH  Google Scholar 

  5. Cannarsa P, Sinestrari C. Semiconcave functions, Hamilton-Jacobi equations, and optimal control, vol 58. Springer;2004.

  6. Cannarsa P, Soner HM. Generalized one-side estimates for solutions of Hamilton-Jacobi equations and applications. Nonlinear Anal. 1989;13:305–23.

    Article  MathSciNet  MATH  Google Scholar 

  7. Casdagli M. Periodic orbits for dissipative twist maps. Ergodic Theory Dynam Systems. 1987;7(2):165–73.

    Article  MathSciNet  MATH  Google Scholar 

  8. Case WB. The pumping of a swing from the standing position. American Journal of Physics 1996.

  9. Celletti A, Chierchia L. Quasi-periodic attractors in celestial mechanics. Arch Ration Mech Anal. 2009;191(2):311–45.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Q, Cheng W, Ishii H, Zhao K. Vanishing contact structure problem and convergence of the viscosity solutions. Comm Partial Differential Equations. 2019;44(9):801–36.

    Article  MathSciNet  MATH  Google Scholar 

  11. Contreras G, Itturiaga R, Morgado HS. Weak KAM solutions of the Hamiltonian-Jacobi equation for time-periodic Lagrangians. arXiv:1307.0287.

  12. Crandall MG, Evans LC, Lions P-L. Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc. 1984;282(2):487–502.

    Article  MathSciNet  MATH  Google Scholar 

  13. Davini A, Fathi A, Iturriaga R, Zavidovique M. Convergence of the solutions of the discounted Hamilton-Jacobi equation: convergence of the discounted solutions. Invent Math. 2016;206(1):29–55.

    Article  MathSciNet  MATH  Google Scholar 

  14. Duffing G. Erzwungene schwingungen bei veränderlicher eigenfrequenz und ihre technische bedeutung. Series: Sammlung Vieweg, No 41/42. Braunschweig:Vieweg & Sohn;1918.

  15. Fathi A. Weak KAM theorem in Lagrangian dynamics. preliminary version 10. Lyon. unpublishied;2008.

  16. Holmes P. Ninety plus thirty years of nonlinear dynamics: less is more and more is different. International Journal of Bifurcation and Chaos. 2005;15:2703–16.

    Article  MathSciNet  MATH  Google Scholar 

  17. Le Calvez P. Existence d’orbites quasi-périodiques dans les attracteurs de Birkhoff. Comm Math Phys. 1986;106(30):383–94.

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions P-L. Generalized solutions of Hamilton-Jacobi equations. Boston: Pitman; 1982.

    MATH  Google Scholar 

  19. Lions P-L, Papanicolaou G, Varadhan SRS. Homogenization of Hamilton-Jacobi equations, unpublished work;1987.

  20. Mañé R. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity. 1996;9:273–310.

    Article  MathSciNet  MATH  Google Scholar 

  21. Maro S, Sorrentino A. Aubry-Mather theory for conformally symplectic systems. Commun Math Phys. 2017;354(2):775–808.

    Article  MathSciNet  MATH  Google Scholar 

  22. Martienssen VO. Über neue, resonanzerscheinungen in wechselstromkreisen. Physik Zeitschrift-Leipz. 1910;11:448–60.

    MATH  Google Scholar 

  23. Mather J. Action minimizing invariant measures for positive definite lagrangian systems. Math Z. 1991;207:169–207.

    Article  MathSciNet  MATH  Google Scholar 

  24. Moon FC, Holmess P. A magnetoelastic strange attractor. Journal of Sound and Vibration. 1979;65:275–96.

    Article  MATH  Google Scholar 

  25. Peale SJ. The free precession and libration of mercury. Icarus. 2005;178:4–18.

    Article  Google Scholar 

  26. Poincaré H. Les méthodes nouvelles de la mécanique céleste. vol 2 Paris; 1893. pp.99-105. esp Sec 148 and 149

  27. Post A, de Groot G, Daffertshofer A, Beek PJ. Pumping a playground swing Motor control. 2007;11:136–50.

    Article  Google Scholar 

  28. Ueda Y. Random phenomena resulting from nonlinearity in the system described by Duffing’s equation. International Journal of Non-linear Mechanics. 1985;20:481–91.

    Article  Google Scholar 

  29. Wang K, Wang L, Yan J. Aubry-Mather theory for contact Hamiltonian systems. Comm Math Phys. 2019;366:981–1023.

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang K, Wang L, Yan J. Variational principle for contact Hamiltonian systems and its applications. J Math Pures Appl. 2019;123(9):167–200.

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang Y-N, Yan J, Zhang J. Convergence of viscosity solutions of generalized contact Hamilton-Jacobi equations. arXiv:2004.12269. 2020.

  32. Wojtkowski MP, Liverani C. Conformally symplectic dynamics and symmetry of the lyapunov spectrum. Comm Math Phys. 1998;194(1):47–60.

  33. Zavidovique M. Convergence of solutions for some degenerate discounted Hamilton-Jacobi equations. arXiv:2006.00779. 2020.

Download references

Acknowledgements

J.Z is supported by the the National Key R &D Program of China (No. 2022YFA1007500) and the National Natural Science Foundation of China (Grant No. 12231010, 11901560). Y-N. W is supported by National Natural Science Foundation of China (Grant No. 11971344). J.Y is supported by National Natural Science Foundation of China (Grant No. 11790272) and Shanghai Science and Technology Commission (Grant No. 17XD1400500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlu Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Mather Measure of Convex Lagrangians with \([f]=0\)

For a Tonelli Hamiltonian H(xpt), the conjugated Lagrangian L(xvt) can be established by 6, which is also Tonelli. On the other side, for \([f]=0\), the following Lagrangian

$$\begin{aligned} \widetilde{L}(x,v,t):=e^{F(t)}L(x,v,t),\quad (x,v,t)\in TM\times \mathbb {T}\end{aligned}$$

with

$$\begin{aligned} F(t):=\int _0^tf(s)\text{ d }s \end{aligned}$$

is still time-periodic as the case considered in [23]. Besides, the Euler-Lagrange equation associated with \(\widetilde{L}\) is the same with E-L. So Mañé’s approach to get a Mather measure in [20] is still available for us. As his approach doesn’t rely on the E-L flow, that supplies us with great convenience.

Let X be a metric separable space. A probability measure on X is a nonnegative, countably additive set function \(\mu\) defined on the \(\sigma -\)algebra \(\mathscr {B}(X)\) of Borel subsets of X such that \(\mu (X) = 1\). In this paper, \(X=TM\times \mathbb {T}\). We say that a sequence of probability measures \(\{\tilde{\mu }_n \}_{n\in \mathbb N}\) (weakly) converges to a probability measure \(\tilde{\mu }\) on \(TM\times \mathbb {T}\) if

$$\begin{aligned} \lim _{n\rightarrow +\infty }\int _{TM\times \mathbb {T}}h(x,v,t)\text{ d }\tilde{\mu }_n(x,v,t)=\int _{TM\times \mathbb {T}} h(x,v,t)\text{ d }\tilde{\mu }(x,v,t) \end{aligned}$$

for any \(h\in C_c(TM\times \mathbb {T},\mathbb {R})\).

Definition A.1

A probability measure \(\tilde{\mu }\) on \(TM\times \mathbb {T}\) is called closed if it satisfies:

  • \(\int _{TM\times \mathbb {T}}|v|\text{ d }\tilde{\mu }(x,v,t)<+\infty\);

  • \(\int _{TM\times \mathbb {T}}\langle \partial _x\phi (x,t),v\rangle +\partial _t\phi (x,t) \text{ d }\tilde{\mu }(x,v,t)=0\) for every \(\phi \in C^1(M\times \mathbb {T},\mathbb {R})\).

Let’s denote by \({\mathbb P}_c(TM\times \mathbb {T})\) the set of all closed measures on \(TM\times \mathbb {T}\), then the following conclusion is proved in [20]:

Theorem A.2

$$\begin{aligned} \min _{\tilde{\mu }\in {\mathbb P}_c(TM\times \mathbb {T})}\int _{TM}\widetilde{L}(x,v,t)\text{ d }\tilde{\mu }(x,v,t)=-c(H). \end{aligned}$$

Moreover, the minimizer \(\tilde{\mu }_{\min }\) must be a Mather measure, i.e. \(\tilde{\mu }_{\min }\) is invariant w.r.t. the Euler-Lagrange flow E-L.

Proof

This conclusion is a direct adaption of Proposition 1.3 of [20] to our system \(\widetilde{L}(x,v,t)\), with the c(H) already given in 13.\(\square\)

Appendix B: Semiconcave Functions

Here we attach a series of conclusions about the semiconcave functions which can be found in [5], for the use of Proposition 3.8.

Definition B.1

Assume S is a subset of \(\mathbb {R}^n\). A function \(u:S\rightarrow \mathbb {R}\) is called semiconcave, if there exists a nondecreasing upper semicontinuous function \(\omega :\mathbb {R}^+\rightarrow \mathbb {R}^+\) such that \(\lim _{\rho \rightarrow 0^+}\omega (\rho )=0\) and

$$\begin{aligned} \lambda u(x)-(1-\lambda )u(y)-u(\lambda x+(1-\lambda )y)\le \lambda (1-\lambda )|x-y|\omega (|x-y|),\forall \lambda \in [0,1]. \end{aligned}$$
(54)

We call \(\omega\) a modulus of semiconcavity for u in S.

Definition B.2

[Definition 3.1.1 in [5]] For any \(x\in S\), the set

$$\begin{aligned} D^+u(x)=\bigg \{p\in \mathbb {R}^n| \limsup _{y\rightarrow x}\frac{u(y)-u(x)-\langle p,y-x\rangle }{|y-x|}\le 0\bigg \} \end{aligned}$$

is called the Fréchet superdifferential of u at x. We shall give some properties of \(D^+u(x)\), which can be found in Chapter 3 of [5].

Proposition B.3

Assume \(A\subset \mathbb {R}^n\) is open. Let \(u:A\rightarrow \mathbb {R}\) be a semiconcave function with modulus \(\omega\) and \(x\in A\). Then,

  • \(D^+u(x)\not =\emptyset\).

  • \(D^+u(x)\) is a closed, convex set of \(T_x^*A\cong \mathbb {R}^n\)

  • If \(D^+u(x)\) is a singleton, then u is differentiable at x.

  • If A is also convex, \(p\in D^+u(x)\) if and only if

    $$\begin{aligned} u(y)-u(x)-\langle p, y-x\rangle \le |y-x|\omega (|y-x|) \end{aligned}$$

    for each \(y\in A\).

Theorem B.4

[Theorem 3.2 in [6]] Let \(u\in Lip_{loc}(\Omega \times (0,T))\) be a viscosity solution of

$$\begin{aligned} \partial _tu+G(x,\partial _xu,t,u)=0 \end{aligned}$$
(55)

where \(G\in Lip_{loc}(\Omega \times \mathbb {R}^n\times (0,T)\times \mathbb {R},\mathbb {R})\) is strictly convex in the second group of variables. Then u is locally semiconcave in \(\Omega \times (0,T)\).

Theorem B.5

[Proposition 3.3.4, Theorem 3.3.6 in [5]] For any \((x,t)\in \Omega \times (0,T)\), we define the reachable derivative set of any viscosity solution u of 55 by

$$\begin{aligned}D^*u(x,t):=\big \{(p_x,p_t)=\lim _{n\rightarrow +\infty }(\partial _x u(x_n,t_n),\partial _t u(x_n,t_n))\in T^*_x\Omega \times T_t^*(0,T)\big |\\ \exists \ (x_n,t_n)_{n\in \mathbb {Z}_+}\in \Omega \times (0,T) \text {converging to ({ x},\,{ t}), at which { u} is differentiable}\big \}. \end{aligned}$$

Consequently, \(D^+u(x,t)=co (D^*u(x,t))\) i.e. any superdifferential of u at (xt) is a convex combination of elements in \(D^*u(x,t)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YN., Yan, J. & Zhang, J. Parameterized Viscosity Solutions of Convex Hamiltonian Systems with Time Periodic Damping. J Dyn Control Syst 29, 1617–1652 (2023). https://doi.org/10.1007/s10883-023-09654-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-023-09654-0

Keywords

Mathematics Subject Classification (2010)

Navigation