Skip to main content
Log in

Cylindrical Solutions for a Critical Grushin-Type Equation via Local Pohozaev Identities

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

We study a critical Grushin-type equation by applying Lyapunov-Schmidt reduction method and obtain the existence of infinitely many positive multi-bubbling solutions with cylindrical symmetry. Particularly, since the concentration points here can be saddle points of some function related to the potential, we locate the concentration points of these solutions by local Pohozaev identities rather than estimating the derivatives of the reduced functional as usual.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badiale M., Tarantello G. A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch Rational Mech Anal 2002;163:259–293.

    Article  MathSciNet  MATH  Google Scholar 

  2. Beckner W. On the Grushin operator and hyperbolic symmetry. Proc Am Math Soc 2001;129:1233–1246.

    Article  MathSciNet  MATH  Google Scholar 

  3. Cao D., Peng S., Yan S. On the Webster scalar curvature problem on the CR sphere with a cylindrical-type symmetry. J Geom Anal 2013;23:1674–1702.

    Article  MathSciNet  MATH  Google Scholar 

  4. Castorina D., Fabbri I., Mancini G., Sandeep K. Hardy-sobolev extremals, hyperbolic symmetry and scalar curvature equations. J Differ Equ 2009;246: 1187–1206.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen W., Wei J., Yan S. Infinitely many solutions for the schrödinger equations in \(\mathbb {R}^{N}\) with critical growth. J Differ Equ 2012;252:2425–2447.

    Article  MATH  Google Scholar 

  6. Deng Y., Lin C. S., Yan S. On the prescribed scalar curvature problem in \(\mathbb {R}^{N}\), local uniqueness and periodicity. J Math Pures Appl 2015;104:1013–1044.

    Article  MathSciNet  MATH  Google Scholar 

  7. Gheraibia B., Wang C., Yang J. Existence and local uniqueness of bubbling solutions for the Grushin critical problem. Differ Integral Equ 2019;32:49–90.

    MathSciNet  MATH  Google Scholar 

  8. Guo Y., Nie J., Niu M., Tang Z. Local uniqueness and periodicity for the prescribed scalar curvature problem of fractional operator in \(\mathbb {R}^{N}\). Calc Var Partial Differ Equ 2017;56:118.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jerison D, Lee JM. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J Am Math Soc 1988;1:1–13.

    Article  MathSciNet  MATH  Google Scholar 

  10. Jerison D., Lee J. M. Yamabe problem on CR manifolds. J Differ Geom 1987;25:167–197.

    Article  MathSciNet  MATH  Google Scholar 

  11. Li Y. Y. On −Δu = K(x)u5 in \(\mathbb {R}^{3}\). Comm Pure Appl Math 1993;46:303–340.

    Article  MathSciNet  Google Scholar 

  12. Li Y. Y. Prescribing scalar curvature on \(\mathbb {S}^{3}\), \(\mathbb {S}^{4}\) and related problems. J Funct Anal 1993;118:43–118.

    Article  MathSciNet  Google Scholar 

  13. Li Y. Y., Wei J., Xu H. Multi-bump solutions of \(-{\Delta } u=K(x)u^{\frac {N+2}{N-2}}\) on lattices in \(\mathbb {R}^{N}\). J Reine Angew Math 2018;743:163–211.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lucia M., Tang Z. Multi-bump bound states for a schrödinger system via Lyapunov-Schmidt reduction. Nonlinear Differ Equ Appl 2017;24:65.

    Article  MATH  Google Scholar 

  15. Mancini G., Fabbri I., Sandeep K. Classification of solutions of a critical Hardy-Sobolev operator. J Differ Equ 2006;224:258–276.

    Article  MathSciNet  MATH  Google Scholar 

  16. Monti R., Morbidelli D. Kelvin transform for Grushin operators and critical semilinear equations. Duke Math J 2006;131:167–202.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ni W. M. On the elliptic equation \(-{\Delta } u=K(x)u^{\frac {N+2}{N-2}}\), its generalizations, and application in geometry. Ind Univ Math J 1982;31: 493–529.

    Article  MATH  Google Scholar 

  18. Niu M, Tang Z, Wang L. Solutions for conformally invariant fractional Laplacian equations with multi-bumps centered in lattices. J Differ Equ 2019;266: 1756–1831.

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng S., Wang C., Yan S. Construction of solutions via local Pohozaev identities. J Funct Anal 2018;274:2606–2633.

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng S., Wang C., Wei S. Constructing solutions for the prescribed scalar curvature problem via local Pohozaev identities. J Differ Equ 2019; 267:2503–2530.

    Article  MathSciNet  MATH  Google Scholar 

  21. del Pino M., Felmer P., Musso M. Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc Var Partial Differ Equ 2003;16:113–145.

    Article  MathSciNet  MATH  Google Scholar 

  22. Rey O. Boundary effect for an elliptic Neumann problem with critical nonlinearity. Commun Partial Differ Equ 1997;22:1055–1139.

    Article  MathSciNet  MATH  Google Scholar 

  23. Vétois J, Wang S. Infinitely many solutions for cubic nonlinear schrödinger equations in dimension four. Adv Nonlinear Anal 2019;8:715–724.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang Z. Q. Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains. Nonlinear Anal 1996; 27:1281–1306.

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang C., Wang Q., Yang J. On the Grushin critical problem with a cylindrical symmetry. Adv Differ Equ 2015;20:77–116.

    MathSciNet  MATH  Google Scholar 

  26. Wei J., Yan S. Infinitely many solutions for the prescribed scalar curvature prolem on SN. J Funct Anal 2010;258:3048–3081.

    Article  MathSciNet  MATH  Google Scholar 

  27. Yan S., Yang J. Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents. Calc Var Partial Differ Equ 2013; 48:587–610.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Min Liu was supported by NSFC (12101282), LJKZ0967 and 2021BSL004. Lushun Wang was supported by NSFC (11901531) and CSC (202008330417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lushun Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.: Basic estimates

Appendix.: Basic estimates

In this section, we give four basic estimates, where Lemma A.1 will run through the whole paper.

Lemma A. 1

(Lemma B.1, [25]) Let α ≥ 1,β ≥ 1 and ij. Then for any \(0<\vartheta \le \min \limits \{\alpha ,\beta \}\), there is a constant C > 0 such that

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{(1+|y|+|z-\xi_{i}|)^{\alpha}}\frac{1}{(1+|y|+|z-\xi_{j}|)^{\beta}}\\ &\le&\frac{C}{|\xi_{i}-\xi_{j}|^{\vartheta}}\bigg[\frac{1}{(1+|y|+|z-\xi_{i}|)^{\alpha+\beta-\vartheta}} +\frac{1}{(1+|y|+|z-\xi_{j}|)^{\alpha+\beta-\vartheta}}\bigg]. \end{array} $$

Lemma A. 2

(Lemma B.2, [25]) Let N ≥ 5 and \(k\in \left [\frac {N+1}{2},N-1\right )\). Then for any constant 0 < 𝜗 < N − 2, there is a constant C > 0 such that for all \(x=(y,z)\in \mathbb R^{k}\times \mathbb R^{N-k}\),

$$ {\int}_{\mathbb{R}^{N}}\frac{1}{|\tilde x-x|^{N-2}}\frac{1}{|\tilde y|(1+|\tilde y|+|\tilde z-\xi|)^{1+\vartheta}}\text{d}\tilde x\le\frac{C}{(1+| y|+|z-\xi|)^{\vartheta}}. $$

Lemma A. 3

Let N ≥ 5 and \(k\in \left [\frac {N+1}{2},N-1\right )\). Then there is a constant C > 0 and a small constant ι > 0 such that for all \(x=(y,z)\in \mathbb R^{k}\times \mathbb R^{N-k}\),

$$ \begin{array}{@{}rcl@{}} &&{\int}_{\mathbb{R}^{N}}\frac{1}{|\tilde x-x|^{N-2}}\frac{\bar {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}^{2^{\star}-2}(\tilde x)}{|\tilde y|}\sum\limits_{i=1}^{m}\frac{1}{(1+\lambda|\tilde y|+\lambda|\tilde z-\xi_{i}|)^{\frac{N-2}{2}+\sigma}}\text{d}\tilde x\\ &\le&\sum\limits_{i=1}^{m}\frac{C}{(1+\lambda|y|+\lambda|z-\xi_{i}|)^{\frac{N-2}{2}+\sigma+\iota}},\quad\text{where }\sigma=\frac{N-4}{N-2}. \end{array} $$

Proof

The proof is similar to that of Lemma B.3 in [25], so we omit the details. □

Lemma A. 4

If N ≥ 5 and (K1)-(K2)-(K3) hold, then

$$ \begin{array}{@{}rcl@{}} \frac{\partial J(\bar {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda})}{\partial\lambda}&=&m\bigg[-\frac{C_{1}}{\lambda^{3}}+\sum\limits_{i=2}^{m}\frac{C_{2}}{\lambda^{N-1}|\xi_{i}-\xi_{1}|^{N-2}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\bigg]\\ &=&m\bigg[-\frac{C_{1}}{\lambda^{3}}+\frac{C_{3}m^{N-2}}{\lambda^{N-1}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\bigg], \end{array} $$

where C1,C2,C3 are some positive constants, and ε > 0 is a small constant.

Proof

Although the proof is similar to that of Lemma A.4 in [20], we give the details for readers’ convenience. By Eq. (1.12), we have

$$ \begin{array}{@{}rcl@{}} &&\frac{\partial J(\bar {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda})}{\partial\lambda}=\int\nabla\bar {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}\nabla\frac{\partial\bar {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}-\int K(x)\frac{\bar {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial\bar {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}\\ &=&\frac{\partial J({\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda})}{\partial\lambda}+\int\bigg[|\nabla\eta|^{2}{\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}+\eta\nabla\eta\nabla {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}\\ &&+\eta {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}\nabla\eta\nabla\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}+(\eta^{2}-1)\nabla {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}\nabla\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}\bigg]\\ &&-\int K(x)(\eta^{2^{\star}}-1)\frac{{\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}\\ &:=&\frac{\partial J({\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda})}{\partial\lambda}+\tilde J_{1}-\tilde J_{2}. \end{array} $$

Firstly, we show \(\tilde J_{1}=O(\frac {m}{\lambda ^{3+\varepsilon }})\). In terms of the symmetry, Eqs. (2.28) and (2.10), we get

$$ \begin{array}{@{}rcl@{}} &&\Big|\int|\nabla\eta|^{2}{\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}\Big| \le\frac{Cm}{\lambda}\int|\nabla\eta|^{2}\Big(U_{\xi_{1},\lambda}^{2}+U_{\xi_{1},\lambda}\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\Big)\\ &\le&\frac{Cm}{\lambda}\bigg[\frac{1}{\lambda^{N-2}}+\frac{1}{\lambda^{2}}\sum\limits_{i=2}^{m}\frac{1}{(\lambda|\xi_{i}-\xi_{1}|)^{N-4-\varepsilon}}\bigg]\le\frac{Cm}{\lambda^{3+\varepsilon}}. \end{array} $$

Similarly, we find that the other three terms in \(\tilde J_{1}\) also have the same estimates as above.

Secondly, we show \(\tilde J_{2}=O(\frac {m}{\lambda ^{3+\varepsilon }})\). Retaining the symmetry, the estimates of P02 in Lemma 2.5, (K1), Eqs. (2.28) and (2.8), we deduce that

$$ \begin{array}{@{}rcl@{}} &&\Big|\int K(x)(\eta^{2^{\star}}-1)\frac{{\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}\Big|\\ &\le&\frac{Cm}{\lambda^{2+\varepsilon}}\int\frac{(\eta^{2^{\star}}-1)\lambda^{\frac{N+2}{2}}}{\lambda|y|(1+\lambda|y|+\lambda|z-\xi_{1}|)^{\frac{N}{2}+\sigma}}\sum\limits_{i=1}^{m}\frac{\lambda^{\frac{N-2}{2}}}{(1+\lambda|y|+\lambda|z-\xi_{i}|)^{N-2}}\\ &\le&\frac{Cm}{\lambda^{2+\varepsilon}}\bigg[\frac{1}{\lambda}+\frac{1}{\lambda}\sum\limits_{i=2}^{m}\frac{1}{(\lambda|\xi_{i}-\xi_{1}|)^{\sigma}}\bigg]\le\frac{Cm}{\lambda^{3+\varepsilon}}. \end{array} $$

Thirdly, we estimate \(\frac {\partial J({\Upsilon }_{\bar r,\bar z^{\prime \prime },\lambda })}{\partial \lambda }\), which can be disintegrated as follows:

$$ \begin{array}{@{}rcl@{}} \frac{\partial J({\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda})}{\partial\lambda}&=&\int\big(1-K(x)\big)\frac{{\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda}\\ &&-\int\frac{{\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}^{2^{\star}-1}-{\sum}_{i=1}^{m}U_{\xi_{i},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial {\Upsilon}_{\bar r,\bar z^{\prime\prime},\lambda}}{\partial\lambda} :=\tilde J_{3}-\tilde J_{4}. \end{array} $$

Next we shall compute \(\tilde J_{3}\). By symmetry, (K1), (K2), (K3), Eqs. (1.11) and (2.10), we obtain that

$$ \begin{array}{@{}rcl@{}} \tilde J_{3}&=&m\bigg[\int\big(1-K(x)\big)\frac{U_{\xi_{1},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial U_{\xi_{1},\lambda}}{\partial\lambda}+O\Big(\int\frac{1-K(x)}{\lambda}\frac{U_{\xi_{1},\lambda}^{2^{\star}-1}}{|y|}\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\Big)\\ &&\quad+O\Big(\frac{1}{\lambda}\int\frac{U_{\xi_{1},\lambda}}{|y|}\Big(\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\Big)^{2^{\star}-1}\Big)\bigg] =m\bigg[-\frac{C_{1}}{\lambda^{3}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\bigg]. \end{array} $$

Indeed, as the arguments of P02 in Lemma 2.5 and by Eq. (2.10), we have

$$ \begin{array}{@{}rcl@{}} &&\frac{1}{\lambda}\int\frac{U_{\xi_{1},\lambda}}{|y|}\Big(\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\Big)^{2^{\star}-1}\\ &\le&\frac{C}{\lambda^{2+\varepsilon}}\int\frac{\lambda^{\frac{N-2}{2}}}{|y|(1+\lambda|y|+\lambda|z-\xi_{1}|)^{N-2}}\sum\limits_{i=2}^{m}\frac{\lambda^{\frac{N}{2}}}{(1+\lambda|y|+\lambda|z-\xi_{i}|)^{\frac{N}{2}+\sigma}}\\ &\le&\frac{C}{\lambda^{2+\varepsilon}}\sum\limits_{i=2}^{m}\frac{1}{(\lambda|\xi_{i}-\xi_{1}|)^{\frac{N-2}{2}}}\le\frac{C}{\lambda^{3+\varepsilon}}. \end{array} $$

By Taylor expansion, (K1), Eqs. (1.11) and (2.10), we get

$$ \begin{array}{@{}rcl@{}} &&\int\frac{|1-K(x)|}{\lambda}\frac{U_{\xi_{1},\lambda}^{2^{\star}-1}}{|y|}\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\\ &\le&{\int}_{\big\{(y,z^{\prime},z^{\prime\prime})\in \mathbb{R}^{N}:|(r,z^{\prime\prime})-(r_{0}, z_{0}^{\prime\prime})|\le\lambda^{-\frac{1+\varepsilon}{2}}\big\}}\frac{C}{\lambda^{2+\varepsilon}}\frac{U_{\xi_{1},\lambda}^{2^{\star}-1}}{|y|}\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\\ &&+{\int}_{\big\{(y,z^{\prime},z^{\prime\prime})\in \mathbb{R}^{N}:|(r,z^{\prime\prime})-(r_{0}, z_{0}^{\prime\prime})|>\lambda^{-\frac{1+\varepsilon}{2}}\big\}}\frac{C}{\lambda}\frac{U_{\xi_{1},\lambda}^{2^{\star}-1}}{|y|}\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\\ &\le&\frac{C}{\lambda^{2+\varepsilon}}\sum\limits_{i=2}^{m}\frac{1}{(\lambda|\xi_{i}-\xi_{1}|)^{N-2}}+\frac{C}{\lambda^{2-\varepsilon}}\sum\limits_{i=2}^{m}\frac{1}{(\lambda|\xi_{i}-\xi_{1}|)^{N-3-\varepsilon}}\le\frac{C}{\lambda^{3+\varepsilon}}. \end{array} $$

Denoting

$$D_{\lambda,\varepsilon}:=\big\{(y,z^{\prime},z^{\prime\prime})\in \mathbb{R}^{N}:|(r,z^{\prime\prime})-(r_{0},z_{0}^{\prime\prime})|\le\lambda^{-\frac{1-\varepsilon}{2}}\big\}$$

and

$$\bar D_{\lambda,\varepsilon}:=\big\{(y,z^{\prime},z^{\prime\prime})\in \mathbb{R}^{N}:|(|z^{\prime}+\xi_{1}^{\prime}|,z^{\prime\prime})-(r_{0},z_{0}^{\prime\prime})|\le\lambda^{-\frac{1-\varepsilon}{2}}\big\},$$

and using Eq. (1.11), (K2), (K3), we can deduce that

$$ \begin{array}{@{}rcl@{}} &&\int\big(1-K(x)\big)\frac{U_{\xi_{1},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial U_{\xi_{1},\lambda}}{\partial\lambda}\\ &=&-{\int}_{D_{\lambda,\varepsilon}}\bigg[\sum\limits_{i,j=1}^{N-k}\frac{1}{2}\frac{\partial^{2}K(x_{0})}{\partial z_{i}\partial z_{j}}(z_{i}-z_{0i})(z_{j}-z_{0j})+O\big(|x-x_{0}|^{3}\big)\bigg]\frac{1}{|y|}\frac{1}{2^{\star}}\frac{\partial U_{\xi_{1},\lambda}^{2^{\star}}}{\partial\lambda}\\ &&+{\int}_{D^{c}_{\lambda,\varepsilon}}\big(1-K(x)\big)\frac{U_{\xi_{1},\lambda}^{2^{\star}-1}}{|y|}\frac{\partial U_{\xi_{1},\lambda}}{\partial\lambda}\\ &=&-{\int}_{\bar D_{\lambda,\varepsilon}}\bigg[\sum\limits_{i,j=1}^{N-k}\frac{1}{2}\frac{\partial^{2}K(x_{0})}{\partial z_{i}\partial z_{j}}(z_{i}+\xi_{1i}-z_{0i})(z_{j}+\xi_{1j}-z_{0j})\\ &&+O\big(| x+(0,\xi_{1})-x_{0}|^{3}\big)\bigg]\frac{1}{|y|}\frac{1}{2^{\star}}\frac{\partial U_{0,\lambda}^{2^{\star}}}{\partial\lambda}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\\ &=&-\frac{\partial}{\partial\lambda}{\int}_{\mathbb{R}^{N}}\bigg[\sum\limits_{i,j=1}^{N-k}\frac{1}{2}\frac{\partial^{2}K(x_{0})}{\partial z_{i}\partial z_{j}}\Big(\frac{ z_{i}}{\lambda}+\xi_{1i}-z_{0i}\Big)\Big(\frac{ z_{j}}{\lambda}+\xi_{1j}-z_{0j}\Big)\\ &&+O\Big(\big|\frac{ x}{\lambda}+(0,\xi_{1})-x_{0}\big|^{3}\Big)\bigg]\frac{1}{|y|}\frac{U_{0,1}^{2^{\star}}}{2^{\star}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\\ &=&-\frac{\partial}{\partial\lambda}{\int}_{\mathbb{R}^{N}}\sum\limits_{i,j=1}^{N-k}\frac{1}{2}\frac{\partial^{2}K(x_{0})}{\partial z_{i}\partial z_{j}}\Big(\frac{ z_{i}}{\lambda}+\xi_{1i}-z_{0i}\Big)\Big(\frac{ z_{j}}{\lambda}+\xi_{1j}-z_{0j}\Big)\frac{1}{|y|}\frac{U_{0,1}^{2^{\star}}}{2^{\star}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\\ &=&-\frac{\partial}{\partial\lambda}{\int}_{\mathbb{R}^{N}}\sum\limits_{i=1}^{N-k}\frac{1}{2}\frac{\partial^{2}K(x_{0})}{\partial {z_{i}^{2}}}\frac{ {z_{i}^{2}}}{\lambda^{2}}\frac{1}{|y|}\frac{U_{0,1}^{2^{\star}}}{2^{\star}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\\ &=&\frac{1}{\lambda^{3}}\frac{\Delta K(x_{0})}{2^{\star} (N-k)}{\int}_{\mathbb{R}^{N}}\frac{|z|^{2}}{|y|}U_{0,1}^{2^{\star}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\\ &=&-\frac{C_{1}}{\lambda^{3}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big) \quad \text{ for some constant } C_{1}>0. \end{array} $$

Finally we estimate \(\tilde J_{4}\). By symmetry, the estimates of P02 in Lemma 2.5 and Eq. (2.10), we have

$$ \begin{array}{@{}rcl@{}} \tilde J_{4}&=&m\bigg[\int\frac{2^{\star}-1}{|y|}U_{\xi_{1},\lambda}^{2^{\star}-2}\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\frac{\partial U_{\xi_{1},\lambda}}{\partial\lambda}+O\Big(\frac{1}{\lambda}\int\frac{U_{\xi_{1},\lambda}}{|y|}\Big(\sum\limits_{i=2}^{m}U_{\xi_{i},\lambda}\Big)^{2^{\star}-1}\Big)\bigg]\\ &=&m\bigg[-\sum\limits_{i=2}^{m}\frac{C_{2}}{\lambda^{N-1}|\xi_{i}-\xi_{1}|^{N-2}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\bigg] =m\bigg[-\frac{C_{3}m^{N-2}}{\lambda^{N-1}}+O\Big(\frac{1}{\lambda^{3+\varepsilon}}\Big)\bigg] \end{array} $$

for some constants C2 > 0 and C3 > 0.

The proof is completed by combining the estimates of \(\tilde J_{1},\ \tilde J_{2}, \ \tilde J_{3}\) and \(\tilde J_{4}\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, L. Cylindrical Solutions for a Critical Grushin-Type Equation via Local Pohozaev Identities. J Dyn Control Syst 29, 391–417 (2023). https://doi.org/10.1007/s10883-021-09577-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-021-09577-8

Keywords

Mathematics Subject Classification (2010)

Navigation