Skip to main content
Log in

A game theoretic approach for pricing and advertising of an integrated product family in a duopoly

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Product family concept predicates to a products’ group or services that derive from a common base and they have usually the same production process and physical features, in different industries. In this paper, we assume two manufacturers that produce some homogeneous product families that they want to decide upon their wholesale price and national advertising expenditure, as a new problem in the multi-agent environment. According to this problem, we propose the non-cooperative, cooperative and two-stage game models to maximize manufacturers' profits and then, based on the optimization approaches i.e., Nash and Stackelberg methods, we obtain the appropriate equilibrium strategies in a special example. Also, we propose a new profit-sharing approach for the Stackelberg model of the defined problem and discuss the solutions as some propositions and marginal points, based on the numerical studies. The results show that the centralized model leads to better profit than the non-centralized and Stackelberg models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

\(i \in N_{1} = \left\{ {1,2, \cdots ,n_{1} } \right\}\) :

Product of first manufacturer

\(j \in N_{2} = \left\{ {1,2, \cdots ,n_{2} } \right\}\) :

Product of second manufacturer

\(F_{1} = \left\{ {f_{1} ,f_{2} , \cdots ,f_{{m_{i} }} } \right\}\) :

Set of base modules for the first manufacturer’s products

\(F_{2} = \left\{ {f_{1} ,f_{2} , \cdots ,f_{{m_{j} }} } \right\}\) :

Set of base modules for the second manufacturer’s products

\(F_{1i} \subseteq F_{1} ,F_{1i} \ne \emptyset\) :

Set of base modules for the product \(i\) of the first manufacturer

\(F_{2j} \subseteq F_{2} ,F_{2j} \ne \emptyset\) :

Set of base modules for the product \(j\) of the second manufacturer

\(m_{i} ,m_{j}\) :

The number of module bases for product \(i\) and \(j\)

\(s_{ij}\) :

Sharing rate between product \(i\) and \(j\)

\(\theta\) :

A positive constant

\(\alpha_{i} , \alpha_{j}\) :

The basic market for product \(i\) and \(j\)

\(\beta_{i} , \beta_{j}\) :

The marginal demand of product \(i\) and \(j\)

\(\lambda_{i} , \lambda_{j}\) :

The cross-price sensitivity for product \(i\) and \(j\)

\(\gamma\) :

The effectiveness of national advertising in generating sale

\(c_{i} , c_{j}\) :

The production cost for product \(i\) and \(j\)

\(w_{i} , w_{j}\) :

The wholesale price for product \(i\) and \(j\)

\(A_{i} , A_{j}\) :

The national advertising expenditure for product \(i\) and \(j\)

References

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soroush Safarzadeh.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ B = \gamma^{4} {\text{sr}}_{ij}^{2} - \left( {4\beta_{j} - \gamma^{2} } \right)\left( {4\beta_{i} - \gamma^{2} } \right) + 4\lambda_{i} \lambda_{j} + 2\gamma^{2} {\text{sr}}_{ij} \left( {\lambda_{i} + \lambda_{j} } \right) $$
$$ B_{i} = \gamma^{4} {\text{sr}}_{ij}^{2} - \left( {6\beta_{i} - \gamma^{2} } \right)\left( {4\beta_{j} - \gamma^{2} } \right) + 2\gamma^{2} {\text{sr}}_{ij} \lambda_{j} $$
$$ B_{2} = \gamma^{2} {\text{sr}}_{ij} \beta_{j} + \left( {6\beta_{j} - \gamma^{2} } \right)\lambda_{j} $$
$$ B_{3} = \alpha_{i} \left( {4\beta_{j} - \gamma^{2} } \right) - \gamma^{2} sr_{ij} \alpha_{j} - 2\alpha_{j} \lambda_{j} $$
$$ B_{4} = 2\gamma^{2} sr_{ij} \beta_{i} + 2\left( {6\beta_{i} - \gamma^{2} } \right)\lambda_{i} $$
$$ B_{5} = \gamma^{4} sr_{ij}^{2} - \left( {6\beta_{j} - \gamma^{2} } \right)\left( {4\beta_{i} - \gamma^{2} } \right) + 2\gamma^{2} sr_{ij} \lambda_{i} $$
$$ B_{6} = \alpha_{j} \left( {4\beta_{i} - \gamma^{2} } \right) - \gamma^{2} sr_{ij} \alpha_{i} - 2\alpha_{i} \lambda_{i} $$
$$ B_{7} = \beta_{i} \left( {4\beta_{j} - \gamma^{2} } \right) + \gamma^{2} sr_{ij} \lambda_{i} + 2\lambda_{i} \lambda_{j} $$
$$ B_{8} = \gamma^{3} sr_{ij} + 2\gamma^{2} \lambda_{j} \alpha_{i} \left( {4\beta_{j} - \gamma^{2} } \right) $$
$$ B_{9} = \lambda_{i} \gamma^{2} + \gamma^{2} \beta_{i} sr_{ij} - 2\beta_{i} \lambda_{i} $$
$$ B_{10} = \beta_{j} \left( {4\beta_{i} - \gamma^{2} } \right) + \gamma^{2} sr_{ij} \lambda_{j} + 2\lambda_{i} \lambda_{ij} $$
$$ B_{11} = \gamma^{2} sr_{ij} \beta_{j} + \left( {6\beta_{j} - \gamma^{2} } \right)\lambda_{j} $$
$$ E = \left( { - \gamma^{2} \left( {1 + sr_{ij} } \right)^{2} + 2\beta_{i} + 2\beta_{j} - 2\lambda_{i} - 2\lambda_{j} } \right) $$
$$ E_{1} = 2\left( {\beta_{i} - \lambda_{j} } \right) - 2\gamma^{2} \left( {1 + sr_{ij} } \right)^{2} $$
$$ E_{2} = 4\left( {\beta_{j} - \lambda_{i} } \right) - 2\gamma^{2} \left( {1 + sr_{ij} } \right)^{2} $$
$$ E_{3} = \gamma \left( {1 + sr_{ij} } \right)\left( {\lambda_{i} - \beta_{j} } \right) $$
$$ E_{4} = \gamma^{2} \left( {1 + sr_{ij} } \right)^{2} \left( {\lambda_{j} - \beta_{i} } \right) - 2\left( {\beta_{j} - \lambda_{i} } \right)\left( {E - 2\beta_{i} + 2\lambda_{j} } \right) $$
$$ E_{5} = \alpha_{i} \left( {E + \beta_{j} - \lambda_{i} } \right) - 2c_{j} \left( {\beta_{j} - \lambda_{i} } \right)\left( {\beta_{i} - \lambda_{j} } \right) - \alpha_{j} \left( {E - 2\beta_{j} + 2\lambda_{i} } \right) $$
$$ E_{6} = \beta_{i} \left( {\gamma^{2} \left( {1 + sr_{ij} } \right)^{2} + 2\lambda_{j} } \right) - \beta_{i}^{2} - \gamma^{2} \left( {1 + sr_{ij} } \right)^{2} \left( {\beta_{j} - \lambda_{i} } \right) - \gamma^{2} \left( {1 + sr_{ij} } \right)^{2} \lambda_{j} - \left( {\lambda_{j} } \right)^{2} $$
$$ E_{7} = \alpha_{i} \left( {E - \beta_{i} + \lambda_{j} } \right) + \alpha_{j} \left( {E + 2\beta_{i} - 2\lambda_{j} } \right) $$
$$ \begin{aligned} M & = \gamma^{6} {\text{sr}}_{ij}^{4} + 4\gamma^{4} {\text{sr}}_{ij}^{3} \lambda_{j} + 4\gamma^{2} {\text{sr}}_{ij} \left( {4\beta_{j} - \gamma^{2} } \right)\left( {\lambda_{i} + \lambda_{j} } \right) - \left( {4\beta_{j} - \gamma^{2} } \right) \\ & \quad \left( {\left( {4\beta_{j} - \gamma^{2} } \right)\left( {4\beta_{i} - \gamma^{2} } \right) - 8\lambda_{i} \lambda_{j} } \right) + {\text{sr}}_{ij}^{2} \left( { - 2\gamma^{6} + 8\gamma^{4} \beta_{j} + 4\gamma^{2} \left( {\lambda_{j} } \right)^{2} } \right) \\ \end{aligned} $$
$$ M_{1} = M + 2\gamma^{2} sr_{ij} \lambda_{i} - M_{2} \left( {4\beta_{i} - \gamma^{2} } \right) + 4\lambda_{i} \lambda_{j} $$
$$ M_{2} = 4\beta_{j} - \gamma^{2} $$
$$ \begin{aligned} M_{3} & = \gamma^{6} sr_{ij}^{4} - 2sr_{ij}^{2} \left( {\gamma^{6} - 3\gamma^{4} \beta_{j} } \right) + 2\gamma^{4} sr_{ij}^{3} \lambda_{j} - 2\gamma^{2} sr_{ij} \\ & \quad \left( {2\left( {M_{2} + \beta_{j} } \right)\lambda_{i} + \left( {M_{2} + 2\beta_{j} } \right)\lambda_{j} } \right) + \left( {M_{2} + 2\beta_{j} } \right)\left( {M_{2} \left( {4\beta_{i} - \gamma^{2} } \right) - 4\lambda_{i} \lambda_{j} } \right) \\ \end{aligned} $$
$$ \begin{aligned} M_{4} & = \gamma^{4} {\text{ sr}}_{ij}^{3} \left( {\beta_{i} c_{i} - \alpha_{i} } \right) + M_{2} \left( {\left( {c_{i} \left( {2\beta_{i} - \left( {4\beta_{i} - \gamma^{2} } \right)} \right) - 2\alpha_{i} } \right)\lambda_{i} - \alpha_{j} \left( {4\beta_{i} - \gamma^{2} } \right)} \right) \\ & \quad + 4\lambda_{i} \left( {\alpha_{j} + c_{i} \lambda_{i} } \right)\lambda_{j} + \gamma^{2} {\text{sr}}_{ij}^{2} \left( {\gamma^{2} \left( {\alpha_{j} + c_{i} \lambda_{i} } \right) - 2\left( {\alpha_{i} - c_{i} \beta_{i} } \right)\lambda_{j} } \right) \\ & \quad + \gamma^{2} {\text{sr}}_{ij} ( - \alpha_{i} M_{2} + 2\alpha_{j} \left( {\lambda_{i} + \lambda_{j} } \right) + c_{i} \left( {\beta_{i} M_{2} + 2\lambda_{i} \left( {\lambda_{i} + \lambda_{j} } \right)} \right) \\ \end{aligned} $$
$$ M_{5} = \gamma^{2} sr_{ij}^{2} - \gamma^{2} + 4\beta_{j} + 2sr_{ij} \lambda_{j} $$
$$ M_{6} = c_{i} \beta_{i} M_{2} - \alpha_{i} M_{2} - \gamma^{2} {\text{sr}}_{ij} \left( {\alpha_{j} - c_{j} \beta_{j} + c_{i} \lambda_{i} } \right) + \left( {c_{j} \left( { - M_{2} + 2\beta_{j} } \right) - 2\left( {\alpha_{j} + c_{i} \lambda_{i} } \right)} \right)\lambda_{j} $$
$$ \begin{aligned} M_{7} & = \left( {2{\upalpha }_{i} - {\text{c}}_{i} { }\left( {2{\upbeta }_{i} - \left( {4\beta_{i} - \gamma^{2} { }} \right)} \right)} \right){\uplambda }_{i} ) - \left( {4\beta_{i} - \gamma^{2} } \right)\left( {c_{j} \beta_{j} - \alpha_{j} } \right) \\ & \quad + 2{\uplambda }_{{\text{i}}} { }\left( {c_{j} { }\left( { - M_{2} - 2\beta_{j} } \right) + 2\left( {\alpha_{j} + {\text{c}}_{i} {\uplambda }_{i} } \right)} \right)\lambda_{j} - {\upgamma }^{4} {\text{sr}}_{{{\text{ij}}}}^{3} \left( {{\upalpha }_{i} - {\text{c}}_{i} {\upbeta }_{{\text{i}}} + c_{j} \lambda_{j} } \right) + {\upgamma }^{2} {\text{sr}}_{ij}^{2} { }({\upgamma }^{2} { }(\alpha_{j} \\ & \quad - c_{j} \beta_{j} + {\text{c}}_{i} {\uplambda }_{i} ) - 2\left( {{\upalpha }_{i} - {\text{c}}_{i} {\upbeta }_{i} } \right)\lambda_{j} - 2c_{j} \left( {\lambda_{j} } \right)^{2} ) + {\upgamma }^{2} {\text{sr}}_{ij} { }(2\left( {\alpha_{j} - c_{j} \beta_{j} } \right){\uplambda }_{i} - {\upalpha }_{i} M_{2} + (2\alpha_{j} \\ & \quad + c_{j} { }\left( {6\beta_{j} - M_{2} } \right))\lambda_{j} + c_{i} \left( {\beta_{i} M_{2} + 2\lambda_{i} \left( {\lambda_{i} + \lambda_{j} } \right)} \right) \\ \end{aligned} $$

Appendix B

2.1 Proof of Proposition 1

To prove that the obtained equilibrium strategies for the non-centralized game will maximize the total profit of manufacturers, we calculate the first and second partial derivatives of Eqs. (14) and (15), respectively, and solve them simultaneously, therefore, for the simple proposed example we have:

– Product \(i\) :

$$ \frac{{\partial \pi_{1} \left( {w_{i} ,A_{i} } \right)}}{{\partial w_{i} }} = \gamma \left( {A_{i} + A_{j} {\text{sr}}_{ij} } \right) + \alpha_{i} - w_{i} \beta_{i} - \left( {w_{i} - c_{i} } \right)\beta_{i} + w_{j} \lambda_{j} = 0 $$

We must have a negative definite matrix for maximizing the profit function of the first manufacturer:

$$ \left| {\frac{{\partial^{2} \pi_{1} }}{{\partial w_{i}^{2} }}} \right| = \left| { - 2\beta_{i} } \right| = - 2\beta_{i} < 0 $$

– Product \(j\) :

$$ \frac{{\partial \pi_{1} \left( {w_{j} ,A_{j} } \right)}}{{\partial w_{j} }} = \gamma \left( {A_{j} + A_{i} {\text{sr}}_{ij} } \right) + \alpha_{j} - w_{j} \beta_{j} - \left( {w_{j} - c_{j} } \right)\beta_{j} + p_{i} \lambda_{i} = 0 $$

Similar to the product \(i\), If we must have a negative definite matrix for maximizing the profit function of the second manufacturer:

$$ \left| {\frac{{\partial^{2} \pi_{1} }}{{\partial \left( {w_{j} } \right)^{2} }}} \right| = \left| { - 2\beta_{j} } \right| = - 2\beta_{j} < 0. $$

Now, considering the partial derivatives and solving the system, we have:

$$ \begin{aligned} w_{i} & = \frac{{c_{i} \left( {\gamma^{4} {\text{sr}}_{ij}^{2} - \left( {\gamma^{2} - 2\beta_{i} } \right)\left( {\gamma^{2} - 4\beta_{j} } \right) + 2\gamma^{2} {\text{sr}}_{ij} \lambda_{j} } \right) + 2\left( {\alpha_{i} \left( {\gamma^{2} - 4\beta_{j} } \right) + \gamma^{2} {\text{sr}}_{ij} \left( { - \alpha_{j} + c_{j} \beta_{j} } \right) + \left( { - 2\alpha_{j} + c_{j} \left( {\gamma^{2} - 2\beta_{j} } \right)} \right)\lambda_{j} } \right)}}{{\gamma^{4} {\text{sr}}_{ij}^{2} - \left( {\gamma^{2} - 4\beta_{i} } \right)\left( {\gamma^{2} - 4\beta_{j} } \right) + 4\lambda_{i} \lambda_{j} + 2\gamma^{2} {\text{sr}}_{ij} \left( {\lambda_{i} + \lambda_{j} } \right)}} \\ w_{j} & = \frac{{c_{j} \left( {\gamma^{4} {\text{sr}}_{ij}^{2} - \left( {\gamma^{2} - 4\beta_{i} } \right)\left( {\gamma^{2} - 2\beta_{j} } \right) + 2\gamma^{2} {\text{sr}}_{ij} \lambda_{i} } \right) + 2\left( {\alpha_{j} \left( {\gamma^{2} - 4\beta_{i} } \right) + \gamma^{2} {\text{sr}}_{ij} \left( { - \alpha_{i} + c_{i} \beta_{i} } \right) + \left( { - 2\alpha_{i} + c_{i} \left( {\gamma^{2} - 2\beta_{i} } \right)} \right)\lambda_{i} } \right)}}{{\gamma^{4} {\text{sr}}_{ij}^{2} - \left( {\gamma^{2} - 4\beta_{i} } \right)\left( {\gamma^{2} - 4\beta_{j} } \right) + 4\lambda_{i} \lambda_{j} + 2\gamma^{2} {\text{sr}}_{ij} \left( {\lambda_{i} + \lambda_{j} } \right)}} \\ \end{aligned} $$

2.2 Proof of Proposition 2

Similar to the proposition 1, we calculate the first and second partial derivatives of Eqs. (14) and (15), respectively, and solve them simultaneously, therefore, for the simple proposed example we have:

– Product \(i\) :

$$ \frac{{\partial \pi_{1} \left( {w_{i} ,A_{i} } \right)}}{{\partial A_{i} }} = \gamma \left( {w_{i} - c_{i} } \right) - 2A_{i} = 0 $$

Moreover, for hessian matrix we have: \(\left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{1} }}{{\partial w_{i}^{2} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial A_{i} \partial w_{i} }}} \\ {\frac{{\partial^{2} \pi_{1} }}{{\partial w_{i} \partial A_{i} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial A_{i}^{2} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2\beta_{i} } & \gamma \\ \gamma & { - 2} \\ \end{array} } \right]\).

Now, if we must have a negative definite matrix to maximize the profit function of the first manufacturer:

$$ \left| {\frac{{\partial^{2} \pi_{1} }}{{\partial A_{i}^{2} }}} \right| = \left| { - 2} \right| = - 2 < 0 $$

\(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{1} }}{{\partial w_{i}^{2} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial A_{i} \partial w_{i} }}} \\ {\frac{{\partial^{2} \pi_{1} }}{{\partial w_{i} \partial A_{i} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial A_{i}^{2} }}} \\ \end{array} } \right| = \left| {\begin{array}{*{20}c} { - 2\beta_{i} } & \gamma \\ \gamma & { - 2} \\ \end{array} } \right| = 4\beta_{i} - \gamma^{2} > 0 \Rightarrow 0 < {\upgamma } < 2\sqrt {\beta_{i} }\).

– Product \(j\) :

$$ \frac{{\partial \pi_{2} \left( {w_{j} ,A_{i} } \right)}}{{\partial A_{j} }} = \gamma \left( {w_{j} - c_{j} } \right) - 2A_{j} = 0 $$

For hessian matrix we have: \(\left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{2} }}{{\partial \left( {w_{j} } \right)^{2} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial A_{j} \partial w_{j} }}} \\ {\frac{{\partial^{2} \pi_{2} }}{{\partial w_{j} \partial A_{j} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial \left( {A_{j} } \right)^{2} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2\beta_{j} } & \gamma \\ \gamma & { - 2} \\ \end{array} } \right]\).

Similar to the product \(i\), If we must have a negative definite matrix for maximizing the profit function of the second manufacturer:

$$ \left| {\frac{{\partial^{2} \pi }}{{\partial \left( {A_{j} } \right)^{2} }}} \right| = \left| { - 2} \right| = - 2 < 0 $$
$$ \left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{2} }}{{\partial \left( {w_{j} } \right)^{2} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial A_{j} \partial w_{j} }}} \\ {\frac{{\partial^{2} \pi_{2} }}{{\partial w_{j} \partial A_{j} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial \left( {A_{j} } \right)^{2} }}} \\ \end{array} } \right| = \left| {\begin{array}{*{20}c} { - 2\beta_{j} } & \gamma \\ \gamma & { - 2} \\ \end{array} } \right| = 4\beta_{j} - \gamma^{2} > 0 \Rightarrow 0 < {\upgamma } < 2\sqrt {\beta_{j} } . $$

With respect the first obtained relation (\(0 < {{\upgamma }} < 2\sqrt {\beta _{i} } \)) and present relation, we have:

$$ 0 < {\upgamma } < 2\sqrt {\min \left( {\beta_{i} ,\beta_{j} } \right)} $$

Now, with considering the partial derivatives Eqs. and solving the system of Eqs., we have:

$$ A_{i} = \frac{{\gamma \left( {\alpha_{i} \left( {\gamma^{2} - 4\beta_{j} } \right) - c_{i} \beta_{i} \left( {\gamma^{2} - 4\beta_{j} } \right) - \gamma^{2} {\text{sr}}_{ij} \left( {\alpha_{j} - c_{j} \beta_{j} + c_{i} \lambda_{i} } \right) + \left( {c_{j} \left( {\gamma^{2} - 2\beta_{j} } \right) - 2\left( {\alpha_{j} + c_{i} \lambda_{i} } \right)} \right)\lambda_{j} } \right)}}{{\gamma^{4} {\text{sr}}_{ij}^{2} - \left( {\gamma^{2} - 4\beta_{i} } \right)\left( {\gamma^{2} - 4\beta_{j} } \right) + 4\lambda_{i} \lambda_{j} + 2\gamma^{2} {\text{sr}}_{ij} \left( {\lambda_{i} + \lambda_{j} } \right)}} $$
$$ A_{j} = \frac{{ - \gamma \left( { - \alpha_{j} \left( {\gamma^{2} - 4\beta_{i} } \right) + \gamma^{2} c_{j} \beta_{j} - 4c_{j} \beta_{i} \beta_{j} - \gamma^{2} c_{i} \lambda_{i} + 2\alpha_{i} \lambda_{i} + 2c_{i} \beta_{i} \lambda_{i} + 2c_{j} \lambda_{i} \lambda_{j} + \gamma^{2} {\text{sr}}_{ij} \left( {\alpha_{i} - c_{i} \beta_{i} + c_{j} \lambda_{j} } \right)} \right)}}{{\gamma^{4} {\text{sr}}_{ij}^{2} - \left( {\gamma^{2} - 4\beta_{i} } \right)\left( {\gamma^{2} - 4\beta_{j} } \right) + 4\lambda_{i} \lambda_{j} + 2\gamma^{2} {\text{sr}}_{ij} \left( {\lambda_{i} + \lambda_{j} } \right)}} $$

2.3 Proof of Proposition 3

We have the same argument for the centralized model and therefore, we calculate the first and second partial derivatives of Eq. (18) and solve them simultaneously as follow:

$$ \begin{aligned} \frac{{\partial \pi_{c} \left( {w_{ij}^{c} ,A_{ij}^{c} } \right)}}{{\partial w_{ij}^{c} }} & = 2\gamma A_{ij}^{c} \left( {1 + {\text{sr}}_{ij} } \right) + \alpha_{i} + \alpha_{j} + w_{ij}^{c} \left( {\lambda_{i} - \beta_{j} } \right) + \left( {w_{ij}^{c} - c_{j} } \right)\left( {\lambda_{i} - \beta_{j} } \right) \\ & \quad + w_{ij}^{c} \left( {\lambda_{j} - \beta_{i} } \right) + \left( {w_{ij}^{c} - c_{i} } \right)\left( {\lambda_{j} - \beta_{i} } \right) = 0 \\ \end{aligned} $$

Similar to the previous section, if we must have a negative definite matrix to maximize the total profit of the manufacturers:

Proposition 1. \(\left| {\frac{{\partial^{2} \pi_{c} }}{{\partial \left( {w_{ij}^{c} } \right)^{2} }}} \right| = \left| { - 2\beta_{i} - 2\beta_{j} + 2\lambda_{i} + 2\lambda_{j} } \right| = 2\lambda_{i} + 2\lambda_{j} - 2\beta_{i} - 2\beta_{j} < 0\)

Proposition 2. \(\Rightarrow \lambda_{i} + \lambda_{j} < \beta_{i} + \beta_{j} \).

Now, with considering the partial derivatives Eqs. and solving the system of Eqs., we have:

Proposition 3. \(w_{ij}^{c} = - \frac{{2\gamma^{2} \left( {c_{i} + c_{j} } \right)\left( {1 + {\text{sr}}_{ij} } \right)^{2} - 4\left( {\alpha_{i} + \alpha_{j} + c_{j} \left( {\beta_{j} - \lambda_{i} } \right) + c_{i} \left( {\beta_{i} - \lambda_{j} } \right)} \right)}}{{4\left( { - \gamma^{2} \left( {1 + {\text{sr}}_{ij} } \right)^{2} + 2\beta_{i} + 2\beta_{j} - 2\lambda_{i} - 2\lambda_{j} } \right)}}\)

2.4 Proof of Proposition 4

We have the same argument for the centralized model and therefore, we calculate the first and second partial derivatives of Eq. (18) and solve them simultaneously as follow:

$$ \frac{{\partial \pi_{c} \left( {w_{ij}^{c} ,A_{ij}^{c} } \right)}}{{\partial A_{ij}^{c} }} = - 4A_{ij}^{c} + \gamma \left( {w_{ij}^{c} - c_{i} } \right)\left( {1 + {\text{sr}}_{ij} } \right) + \gamma \left( { - c_{j} + w_{ij}^{c} } \right)\left( {1 + {\text{sr}}_{ij} } \right) = 0 $$

Hessian matrix: \(\left[ {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{c} }}{{\partial \left( {w_{ij}^{c} } \right)^{2} }}} & {\frac{{\partial^{2} \pi_{c} }}{{\partial A_{ij}^{c} \partial w_{ij}^{c} }}} \\ {\frac{{\partial^{2} \pi_{c} }}{{\partial w_{ij}^{c} \partial A_{ij}^{c} }}} & {\frac{{\partial^{2} \pi_{c} }}{{\partial \left( {A_{ij}^{c} } \right)^{2} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - 2\beta_{i} - 2\beta_{j} + 2\lambda_{i} + 2\lambda_{j} } & {2\gamma \left( {1 + {\text{sr}}_{ij} } \right)} \\ {2\gamma \left( {1 + {\text{sr}}_{ij} } \right)} & { - 4} \\ \end{array} } \right]\).

Similar to the previous section, if we must have a negative definite matrix to maximize the total profit of the manufacturers:

Proposition 4. \(\left| {\frac{{\partial^{2} \pi_{c} }}{{\partial \left( {A_{ij}^{c} } \right)^{2} }}} \right| = \left| { - 4} \right| = - 4 < 0\)

Proposition 5. \(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{c} }}{{\partial \left( {w_{ij}^{c} } \right)^{2} }}} & {\frac{{\partial^{2} \pi_{c} }}{{\partial A_{ij}^{c} \partial w_{ij}^{c} }}} \\ {\frac{{\partial^{2} \pi_{c} }}{{\partial w_{ij}^{c} \partial A_{ij}^{c} }}} & {\frac{{\partial^{2} \pi_{c} }}{{\partial \left( {A_{ij}^{c} } \right)^{2} }}} \\ \end{array} } \right| = \left| {\begin{array}{*{20}c} {2\lambda_{i} + 2\lambda_{j} - 2\beta_{i} - 2\beta_{j} } & {2\gamma \left( {1 + {\text{sr}}_{ij} } \right)} \\ {2\gamma \left( {1 + {\text{sr}}_{ij} } \right)} & { - 4} \\ \end{array} } \right| = 8\beta_{i} + 8\beta_{j} - 4\gamma^{2} - 8\gamma^{2} {\text{sr}}_{ij} - 4\gamma^{2} {\text{sr}}_{ij}^{2} - 8\lambda_{i} - 8\lambda_{j} > 0\)\(\Rightarrow 2\beta_{i} + 2\beta_{j} > \gamma^{2} + 2\gamma^{2} {\text{sr}}_{ij} + \gamma^{2} {\text{sr}}_{ij}^{2} + 2\lambda_{i} + 2\lambda_{j}\).

Now, with considering the partial derivatives Eqs. and solving the system of Eqs., we have:

$$ A_{ij}^{c} = - \frac{{\gamma \left( {1 + {\text{sr}}_{ij} } \right)\left( {\alpha_{i} + \alpha_{j} + c_{i} \left( { - \beta_{j} + \lambda_{i} } \right) + c_{j} \left( { - \beta_{i} + \lambda_{j} } \right)} \right)}}{{2\left( {\gamma^{2} + \gamma^{2} {\text{sr}}_{ij} \left( {2 + {\text{sr}}_{ij} } \right) - 2\beta_{i} - 2\beta_{j} + 2\lambda_{i} + 2\lambda_{j} } \right)}}. $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarzadeh, S. A game theoretic approach for pricing and advertising of an integrated product family in a duopoly. J Comb Optim 45, 113 (2023). https://doi.org/10.1007/s10878-023-01041-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10878-023-01041-6

Keywords

Navigation