Skip to main content

Advertisement

Log in

Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

In this paper, we apply a scheduling model to address the single day surgery scheduling problem for single operating room (OR). The OR operational cost and patients’ satisfaction need to be balanced. We optimize the scheduling of surgeries with two priority levels in an integrated manner, given the OR is off-duty for a fixed period. Surgeon’s accumulated tiredness during working hours, and controllable surgery durations are modeled. After deriving the NP-hardness of the problem, we first solve optimally two special cases in pseudo-polynomial time, and then design a hybrid evolutionary multi-objective algorithm for the general case. Iterated local search is embedded into the elitist non-dominated sorting genetic algorithm (NSGA-II) framework, and Pareto optimal property is utilized to guide evolution towards promising areas in solution space. Finally computational studies with data from a hospital in P.R. China are performed to verify the value of algorithm hybridization against the commercial solver and original NSGA-II, and to verify the value of integrated optimization against sequential decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adiri I, Bruno J, Frostig E, Kan A (1989) Single-machine flow-time scheduling with a single breakdown. Acta Inform 26:679–685

    Article  MATH  MathSciNet  Google Scholar 

  • Batun S, Denton BT, Huschka TR, Schaefer AJ (2011) Operating room pooling and parallel surgery processing under uncertainty. Informs J Comput 23:220–237

    Article  MATH  MathSciNet  Google Scholar 

  • Cardoen B, Demeulemeester E, Belien J (2009a) Sequencing surgical cases in a day-care environment: an exact branch-and-price approach. Comput Oper Res 36:2660–2669

    Article  MATH  Google Scholar 

  • Cardoen B, Demeulemeester E, Belien J (2009b) Optimizing a multiple objective surgical case sequencing problem. Int J Prod Econ 119:354–366

    Article  Google Scholar 

  • Cardoen B, Demeulemeester E, Belien J (2010) Operating room planning and scheduling: a literature review. Eur J Oper Res 201:921–932

    Article  MATH  Google Scholar 

  • Crepinsek M, Liu S, Mernik M (2013) Exploration and exploitation in evolutionary algorithms. ACM Comput Surv 45:1–33

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T Evol Comput 6:182–197

    Article  Google Scholar 

  • He Y, Sun L (2015) One-machine scheduling problems with deteriorating jobs and position-dependent learning effects under group technology considerations. Int J Syst Sci 46:1319–1326

    Article  MathSciNet  Google Scholar 

  • Jaradat G, Ayob M, Ahmad Z (2014) On the performance of Scatter Search for post-enrolment course timetabling problems. J Comb Optim 27:417–439

    Article  MATH  MathSciNet  Google Scholar 

  • Jebali A, Hadj Alouane AB, Ladet P (2006) Operating rooms scheduling. Int J Prod Econ 99:52–62

    Article  Google Scholar 

  • Ji M, Hsu C, Yang D (2013) Single-machine scheduling with deteriorating jobs and aging effects under an optional maintenance activity consideration. J Comb Optim 26:437–447

    Article  MATH  MathSciNet  Google Scholar 

  • Kacem I, Kellerer H, Lanuel Y (2013) Approximation algorithms for maximizing the weighted number of early jobs on a single machine with non-availability intervals. J Comb Optim 27:417–439. doi:10.1007/s10878-013-9643-7

    Google Scholar 

  • Lee CY, Lin CS (2001) Single-machine scheduling with maintenance and repair rate-modifying activities. Eur J Oper Res 135:493–513

    Article  MATH  MathSciNet  Google Scholar 

  • Lim D, Jin YC, Ong YS, Sendhoff B (2010) Generalizing surrogate-assisted evolutionary computation. IEEE Trans Evol Comput 14:329–355

    Article  Google Scholar 

  • Pan Q, Ruiz R (2012) Local search methods for the flowshop scheduling problem with flowtime minimization. Eur J Oper Res 222:31–43

    Article  MATH  MathSciNet  Google Scholar 

  • Rahimi-Vahed AR, Mirghorbani SM (2007) A multi-objective particle swarm for a flow shop scheduling problem. J Comb Optim 13:79–102

    Article  MATH  MathSciNet  Google Scholar 

  • Vickson RG (1980) Two single machine sequencing problems involving controllable job processing times. AIIE Trans 12:258–262

    Article  MathSciNet  Google Scholar 

  • Yu S (2014) An optimal single-machine scheduling with linear deterioration rate and rate-modifying activities. J Comb Optim. doi:10.1007/s10878-014-9739-8

  • Zhong L, Luo S, Wu L, Xu L, Yang J, Tang G (2014) A two-stage approach for surgery scheduling. J Comb Optim 27:545–556

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou A, Jin YC, Zhang Q (2014) A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Trans Cybern 44:40–53

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank the anonymous referees for their helpful comments on the earlier versions of our paper. This research was supported by the National Natural Science Foundation of China (Grant Nos. 7141001024, 71271039, 91024029), and the Program for New Century Excellent Talents in University under Grant No. NCET-10-0218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Appendix

Appendix

$$\begin{aligned} \begin{array}{llll} {\min }&{}{ \sqrt{{\Big (\sum \limits _{j = 1}^n {{C_j}}-f^{(1)*}\Big )^2 + \Big (\sum \limits _{j = 1}^n {{c_j}{u_j}}\Big )^2} } }&{} &{}\\ {s.t.}&{}{{s_i} + \alpha ({s_i} - (1 - {y_i}){t_2}) + {{\bar{p}}_i} - {b_i}{u_i} \le {C_i}}&{}{1 \le i \le n}&{}{(1)}\\ &{}{{C_i} \le {s_j} + M(1 - {x_{ij}})}&{}{1 \le i < j \le n;{{\Pr }_i},{{\Pr }_j} = 1}&{}{(2)}\\ &{} &{}{\hbox {or} \quad 1 \le i < j \le n;\,{{\Pr }_i},\,{{\Pr }_j} = 1}&{}\\ &{}{{C_j} \le {s_i} + M{x_{ij}}}&{}{1 \le i < j \le n;\,{{\Pr }_i},\,{{\Pr }_j} = 1}&{}{(3)}\\ &{} &{}\mathrm{or} \quad 1 \le i < j \le n;\,{\Pr }_{i},\,{\Pr }_j = 1 &{}\\ &{}{{C_i} \le {s_j}}&{}{1 \le i,j \le n;\,{{\Pr }_i} = 1,\,{{\Pr }_j} = 2}&{}{(4)}\\ &{}{{C_i} \le {t_1} + M(1 - {y_i})}&{}{1 \le i \le n}&{}{(5)}\\ &{}{{t_2} \le s_i + M{y_i}}&{}{1 \le i \le n}&{}{(6)}\\ &{}{0 \le {u_i} \le {{\bar{u}}_i}}&{}{1 \le i \le n}&{}{(7)}\\ &{}{s_i,{C_i} \ge 0;{y_i} \in \{ 0,1\} }&{}{1 \le i \le n}&{}{(8)}\\ &{}{{x_{ij}} \in \{ 0,1\} }&{}{1 \le i < j \le n;\,{{\Pr }_i},\,{{\Pr }_j} = 1}&{}\\ &{} &{}{\hbox {or} \quad 1 \le i < j \le n;\,{{\Pr }_i},\,{{\Pr }_j} = 1}&{} \end{array} \end{aligned}$$

In the above formulation, \(M\) is a very large positive number, and decision variable notations are introduced as follows: \(s_i\) is the earliest starting time of job \(J_i\), \(C_i\) is the completion time of job \(J_i\), \(u_i\) is the resource allocation for job \(J_i\), \(x_{ij}\) equals 1 if job \(J_i\) is scheduled before job \(J_j\) and 0 otherwise, and \(y_i\) equals 1 if job \(J_i\) is scheduled before \(t_1\) and 0 otherwise. \(f^{(1)*}\) is the minimum value of schedule performance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, F., Yin, Y. et al. Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period. J Comb Optim 30, 967–981 (2015). https://doi.org/10.1007/s10878-015-9846-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-015-9846-1

Keywords

Navigation