Skip to main content
Log in

Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Epileptic seizures are manifestations of intermittent spatiotemporal transitions of the human brain from chaos to order. Measures of chaos, namely maximum Lyapunov exponents (STL max ), from dynamical analysis of the electroencephalograms (EEGs) at critical sites of the epileptic brain, progressively converge (diverge) before (after) epileptic seizures, a phenomenon that has been called dynamical synchronization (desynchronization). This dynamical synchronization/desynchronization has already constituted the basis for the design and development of systems for long-term (tens of minutes), on-line, prospective prediction of epileptic seizures. Also, the criterion for the changes in the time constants of the observed synchronization/desynchronization at seizure points has been used to show resetting of the epileptic brain in patients with temporal lobe epilepsy (TLE), a phenomenon that implicates a possible homeostatic role for the seizures themselves to restore normal brain activity. In this paper, we introduce a new criterion to measure this resetting that utilizes changes in the level of observed synchronization/desynchronization. We compare this criterion’s sensitivity of resetting with the old one based on the time constants of the observed synchronization/desynchronization. Next, we test the robustness of the resetting phenomena in terms of the utilized measures of EEG dynamics by a comparative study involving STL max , a measure of phase (φ max ) and a measure of energy (E) using both criteria (i.e. the level and time constants of the observed synchronization/desynchronization). The measures are estimated from intracranial electroencephalographic (iEEG) recordings with subdural and depth electrodes from two patients with focal temporal lobe epilepsy and a total of 43 seizures. Techniques from optimization theory, in particular quadratic bivalent programming, are applied to optimize the performance of the three measures in detecting preictal entrainment. It is shown that using either of the two resetting criteria, and for all three dynamical measures, dynamical resetting at seizures occurs with a significantly higher probability (α=0.05) than resetting at randomly selected non-seizure points in days of EEG recordings per patient. It is also shown that dynamical resetting at seizures using time constants of STL max synchronization/desynchronization occurs with a higher probability than using the other synchronization measures, whereas dynamical resetting at seizures using the level of synchronization/desynchronization criterion is detected with similar probability using any of the three measures of synchronization. These findings show the robustness of seizure resetting with respect to measures of EEG dynamics and criteria of resetting utilized, and the critical role it might play in further elucidation of ictogenesis, as well as in the development of novel treatments for epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abarbanel H (1996) Analysis of observed chaotic data. Springer, Berlin

    MATH  Google Scholar 

  • Chakravarthy N, Sabesan S, Iasemidis LD, Tsakalis K (2007) Controlling synchronization in a neuron-level population model. Int J Neural Syst 17(2):123–138

    Article  Google Scholar 

  • Chawla D, Lumer ED, Friston KJ (1999) The relationship between synchronization among neuronal populations and their mean activity level. Neural Comput. 11(6):1389–1411

    Article  Google Scholar 

  • Domb C, Green M (1974) Phase transitions and critical phenomena. Academic Press, New York

    Google Scholar 

  • Esteller R, Echauz J, D’Alessandro M, Worrell G, Cranstoun S, Vachtsevanos G, Litt B (2005) Continuous energy variation during the seizure cycle: towards an on-line accumulated energy. Clin Neurophysiol 116(3):517–526

    Article  Google Scholar 

  • Fink M (2000) Electroshock revisited. Am Sci 88:162–167

    Google Scholar 

  • Good L (2007) Automated seizure prediction and control in a rat model of chronic epilepsy. PhD thesis, Arizona State University

  • Good L, Sabesan S, Iasemidis L, Tsakalis K, Treiman D (2004) Brain dynamical disentrainment by a nti-epileptic drugs in rat and human status epilepticus. In: 26th annual international conference of the engineering in medicine and biology society, vol 1, pp 1–4

  • Grassberger P, Procaccia I (1983a) Characterization of strange attractors. Phys Rev Lett 50(5):346–349

    Article  MathSciNet  Google Scholar 

  • Grassberger P, Procaccia I (1983b) Measuring the strangeness of strange attractors. Phys D: Nonlinear Phenom 9(1–2):189–208

    Article  MATH  MathSciNet  Google Scholar 

  • Gwinn R, Kondratyev A, Gale K (2002) Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 114(2):403–409

    Article  Google Scholar 

  • Haken H (1996) Principles of brain functioning: a synergetic approach to brain activity. Springer, New York

    MATH  Google Scholar 

  • Hugenii C (1986) Horoloquim oscilatorium. Muguet, Paris; reprinted in English as: The pendulum clock, Iowa State UP, Ames

    Google Scholar 

  • Iasemidis L (2003) Epileptic seizure prediction and control. IEEE Trans Biomed Eng 50(5):549–558

    Article  Google Scholar 

  • Iasemidis L, Sackellares J (1991) The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex. In: Measuring chaos in the human brain, World Scientific, Singapore, pp 49–82

    Google Scholar 

  • Iasemidis L, Olson L, Savit R, Sackellares J (1994) Time dependencies in the occurrences of epileptic seizures. Epilepsy Res 17(1):81–94

    Article  Google Scholar 

  • Iasemidis L, Principe J, Czaplewski J, Gilmore R, Roper S, Sackellares J (1997) Spatiotemporal transition to epileptic seizures: a nonlinear dynamical analysis of scalp and intracranial EEG recordings. In: Silva FL, Principe JC, Almeida LB (eds) Spatiotemporal models in biological and artificial systems, pp 81–88

  • Iasemidis L, Principe J, Sackellares J (2000) Measurement and quantification of spatio-temporal dynamics of human epileptic seizures. In: Akay M (ed) Nonlinear biomedical signal processing, vol 2, pp 294–318

  • Iasemidis L, Pardalos P, Sackellares J, Shiau D (2001) Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J Comb Optim 5(1):9–26

    Article  MATH  MathSciNet  Google Scholar 

  • Iasemidis L, Shiau D, Chaovalitwongse W, Pardalos P, Carney P, Sackellares J (2002) Adaptive seizure prediction system. Epilepsia 43:264–265

    Google Scholar 

  • Iasemidis L, Pardalos P, Shiau D, Chaovalitwongse W, Narayanan K, Sabesan S, Carney P Chris Sackellares J (2003a) Prediction of human epileptic seizures based on optimization and phase changes of brain electrical activity. Optim Methods Softw 18(1):81–104

    Article  MATH  MathSciNet  Google Scholar 

  • Iasemidis L, Prasad A, Sackellares J, Pardalos P, Shiau D (2003b) On the prediction of seizures, hysteresis and resetting of the epileptic brain: insights from models of coupled chaotic oscillators. In: Bountis T, Pneumatikos S (eds) Order and chaos, vol 8. Publishing House, Thessaloniki, pp 283–305

    Google Scholar 

  • Iasemidis L, Shiau D, Chaovalitwongse W, Sackellares J, Pardalos P, Principe J, Carney P, Prasad A, Veeramani B, Tsakalis K (2003c) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627

    Article  Google Scholar 

  • Iasemidis L, Shiau D, Sackellares J, Pardalos P, Prasad A (2004) Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans Biomed Eng 51(3):493–506

    Article  Google Scholar 

  • Iasemidis L, Tsakalis K, Sackellares J, Pardalos P (2005) Comment on “Inability of Lyapunov exponents to predict epileptic seizures”. Phys Rev Lett 94(1):19801

    Article  Google Scholar 

  • Kostelich EJ (1992) Problems in estimating dynamics from data. Physica D: Nonlinear Phenom 58(1–4):138–152

    Article  MathSciNet  Google Scholar 

  • Lee K, Schubert P, Heinemann U (1984) The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res 321(1):160–164

    Article  Google Scholar 

  • McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846

    Article  Google Scholar 

  • Medvedev A (2002) Epileptiform spikes desynchronize and diminish fast (gamma) activity of the brain an “anti-binding”-mechanism. Brain Res Bull 58(1):115–128

    Article  Google Scholar 

  • Olson L, Iasemidis L, Sackellares J (1989) Evidence that interseizure intervals exhibit low dimensional non-random dynamics. Epilepsia 30(5):644

    Google Scholar 

  • Packard N, Crutchfield J, Farmer J, Shaw R (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

    Article  Google Scholar 

  • Panter P (1965) Modulation, noise, and spectral analysis: applied to information transmission. McGraw-Hill, New York

    Google Scholar 

  • Pardalos P, Rosen J (1987) Constrained global optimization: algorithms and applications. Springer, New York

    MATH  Google Scholar 

  • Prasad A, Iasemidis L, Sabesan S, Tsakalis K (2005) Dynamical hysteresis and spatial synchronization in coupled non-identical chaotic oscillators. Pramana J Phys 64(4):513–523

    Article  Google Scholar 

  • Prince D, Jacobs K (1998) Inhibitory function in two models of chronic epileptogenesis. Epilepsy Res 32(1–2):83–92

    Article  Google Scholar 

  • Rosenblum M, Kurths J (1998) Analysing synchronization phenomena from bivariate data by means of the Hilbert transform. In: Kantz H, Kurths J, Mayer-Kress G. (eds) Nonlinear analysis of physiological data. Springer, Berlin, pp 91–99

    Google Scholar 

  • Rosenblum M, Pikovsky A, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807

    Article  Google Scholar 

  • Sabesan S, Narayanan K, Prasad A, Spanias A, Sackellares J, Iasemidis L (2003) Predictability of epileptic seizures: a comparative study using Lyapunov exponent and entropy based measures. Biomed Sci Instrum 39:129–35

    Google Scholar 

  • Sabesan S, Chakravarthy N, Good L, Tsakalis K, Pardalos P, Iasemidis L (2007) Global optimization and spatial synchronization prior to epileptic seizures. In: Pardalos P, Alves C, Vicente L (eds) Optimization in biomedicine. Springer optimization and its applications series, vol 12. Springer, Berlin, pp 103–125

    Chapter  Google Scholar 

  • Sackellares J, Iasemidis L, Shiau D, Gilmore R, Roper S (2000) Epilepsy when chaos fails. In: Lehnertz K, Arnhold J, Grassberger P, Elger CE (eds) Chaos in the brain? World Scientific, Singapore, pp 112–133

    Google Scholar 

  • Shiau D, Luo Q, Gilmore R, Roper S, Pardalos P, Sackellares J, Iasemidis L (2000) Epileptic seizures resetting revisited. Epilepsia 41(Suppl 7):208

    Google Scholar 

  • Takens F (1980) Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, proc symp, Coventry

  • Traub RD, Contreras D, Whittington MA (2005) Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. J Clin Neurophysiol 22(5):330–342

    Google Scholar 

  • Tsakalis K, Iasemidis LD (2006) Control aspects of a theoretical model for epileptic seizures. Int J Bifurc Chaos 16(7):2013–2027

    Article  MathSciNet  Google Scholar 

  • Tsakalis K, Chakravarthy N, Sabesan S, Iasemidis LD, Pardalos PM (2006) A feedback control systems view of epileptic seizures. Cybern Syst Anal 42(4):483–495

    Article  MATH  Google Scholar 

  • Vastano J, Kostelich E (1986) Comparison of algorithms for determining Lyapunov exponents from experimental data. In: Mayer-Kress G (ed) Dimensions and entropies in chaotic systems: quantification of complex behavior, pp 100–107

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired gabaergic dendritic inhibition. Eur J Neurosci 15(9):1499–1508

    Article  Google Scholar 

  • Wolf A, Swift J, Swinney H, Vastano J (1985) Determining Lyapunov exponents from a time series. Physica D 16(3):285–317

    Article  MATH  MathSciNet  Google Scholar 

  • Zhou J, Lenck-Santini P, Holmes G (2007) Postictal single-cell firing patterns in the hippocampus. Epilepsia 48(4):713–719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivkumar Sabesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabesan, S., Chakravarthy, N., Tsakalis, K. et al. Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques. J Comb Optim 17, 74–97 (2009). https://doi.org/10.1007/s10878-008-9181-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-008-9181-x

Keywords

Navigation