Skip to main content
Log in

Assessment of central hemodynamic effects of phenylephrine: an animal experiment

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Phenylephrine is an α1-adrenergic receptor agonist widely used to treat perioperative hypotension. Its other hemodynamic effects, in particular on preload and contractility, remain controversial. We, therefore, investigated the effect of continuously applied phenylephrine on central hemodynamics in eight mechanically ventilated domestic pigs. Mean arterial pressure (MAP) was increased in steps by 50%, and 100% using phenylephrine. Besides stroke volume (SV), cardiac output (CO), and MAP, mean systemic vascular resistance (SVR) and dynamic arterial elastance (Eadyn) were assessed for characterization of afterload. Changes in preload were assessed by central venous pressure (CVP), global end-diastolic volume (GEDV), mean systemic filling pressure analog (Pmsfa), pulse pressure variation (PPV), and stroke volume variation (SVV). Further, cardiac function index (CFI), global ejection fraction and dPmax were measured as markers of preload dependent contractility. MAP, SV, and CO significantly increased following both interventions, as did SVR. In contrast, Eadyn did not show significant changes. Although the volumetric preload variable GEDV increased after the first step of phenylephrine, this was not reflected by significant changes in CVP or Pmsfa. CFI and dPmax significantly increased after both steps. Phenylephrine does not only affect cardiac afterload, but also increases effective preload. In contrast to CVP and Pmsfa, this effect can be monitored by GEDV. Further, phenylephrine affects contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Michard F, Giglio MT, Brienza N. Perioperative goal-directed therapy with uncalibrated pulse contour methods: impact on fluid management and postoperative outcome. Br J Anaesth. 2017;119:22–30.

    Article  CAS  PubMed  Google Scholar 

  2. Osawa EA, Rhodes A, Landoni G, et al. Effect of perioperative goal-directed hemodynamic resuscitation therapy on outcomes following cardiac surgery: a randomized clinical trial and systematic review. Crit Care Med. 2016;44:724–33.

    PubMed  Google Scholar 

  3. Goepfert MS, Richter HP, Zu Eulenburg C, et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013;119:824–36.

    Article  CAS  PubMed  Google Scholar 

  4. Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.

    Article  PubMed  Google Scholar 

  5. Wakeling HG, McFall MR, Jenkins CS, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95:634–42.

    Article  CAS  PubMed  Google Scholar 

  6. Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, Van Regenmortel N. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46:361–80.

    Article  PubMed  Google Scholar 

  7. Reuter DA, Chappell D, Perel A. The dark side of fluid loading. Intensive Care Med. 2017 (Epub ahead of print).

  8. Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, Teboul JL, Rice TW, Mythen M, Monnet X. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hjortrup PB, Haase N, Bundgaard H, Thomsen SL, Winding R, Pettilä V, Aaen A, Lodahl D, Berthelsen RE, Christensen H, Madsen MB, Winkel P, Wetterslev J, Perner A, CLASSIC Trial Group; Scandinavian Critical Care Trials Group. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 2016;42:1695–705.

    Article  PubMed  Google Scholar 

  10. Thiele RH, Nemergut EC, Lynch C 3rd. The clinical implications of isolated alpha(1) adrenergic stimulation. Anesth Analg. 2011;113:297–304.

    CAS  Google Scholar 

  11. Thiele RH, Nemergut EC, Lynch C 3rd. The physiologic implications of isolated alpha(1) adrenergic stimulation. Anesth Analg. 2011;113:284–96.

    CAS  Google Scholar 

  12. Langesaeter E, Rosseland LA, Stubhaug A. Continuous invasive blood pressure and cardiac output monitoring during caesarean delivery: a randomized, double-blind comparison of low-dose versus high-dose spinal anesthesia with intravenous phenylephrine or placebo infusion. Anesthesiology. 2008;109:856–63.

    Article  CAS  PubMed  Google Scholar 

  13. Butterworth J. Do alpha agonists increase venous return? Anesthesiology. 2004;101:1038.

    Article  PubMed  Google Scholar 

  14. Stewart A, Fernando R, McDonald S, Hignett R, Jones T, Columb M. The dose-dependent effects of phenylephrine for elective cesarean delivery under spinal anesthesia. Anesth Analg. 2010;111:1230–7.

    CAS  Google Scholar 

  15. Cisternas AF, Martin-Flores M, Gleed RD. Continuous minimally invasive cardiac output monitoring with the CO status in a neonatal swine model: recalibration is necessary during vasoconstriction and vasodilation. Paediatr Anaesth 2015;25:852–9.

    Article  PubMed  Google Scholar 

  16. NganKee WD, Lee SW, Ng FF, Tan PE, Khaw KS. Randomized double-blinded comparison of norepinephrine and phenylephrine for maintenance of blood pressure during spinal anesthesia for cesarean delivery. Anesthesiology. 2015;122:736–45.

    Article  CAS  Google Scholar 

  17. Cannesson M, Jian Z, Chen G, Vu TQ, Hatib F. Effects of phenylephrine on cardiac output and venous return depend on the position of the heart on the Frank-Starling relationship. J Appl Physiol. 2012;113:281–9.

    Article  CAS  PubMed  Google Scholar 

  18. Magder S. Phenylephrine and tangible bias. Anesth Analg. 2011;113:211–3.

    Google Scholar 

  19. Rebet O, Andremont O, Gérard JL, Fellahi JL, Hanouz JL, Fischer MO. Preload dependency determines the effects of phenylephrine on cardiac output in anaesthetised patients: a prospective observational study. Eur J Anaesthesiol. 2016;33:638–44.

    Article  CAS  PubMed  Google Scholar 

  20. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1:94–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Malbrain ML, De Potter TJ, Dits H, Reuter DA. Global and right ventricular end-diastolic volumes correlate better with preload after correction for ejection fraction. Acta Anaesthesiol Scand. 2010;54:622–31.

    Article  CAS  PubMed  Google Scholar 

  22. Cecconi M, Aya HD, Geisen M, et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients. Intensive Care Med. 2013;39:1299–305.

    Article  PubMed  Google Scholar 

  23. Parkin WG, Leaning MS. Therapeutic control of the circulation. J Clin Monit Comput. 2008;22:391–400.

    Article  PubMed  Google Scholar 

  24. Chemla D, Hébert JL, Coirault C, et al. Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol. 1998;274:H500-5.

    PubMed  Google Scholar 

  25. Monge García MI, Gil Cano A, Gracia Romero M. Dynamic arterial elastance to predict arterial pressure response to volume loading in preload-dependent patients. Crit Care. 2011;15:R15.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dyer RA, Reed AR, van Dyk D, et al. Hemodynamic effects of ephedrine, phenylephrine, and the coadministration of phenylephrine with oxytocin during spinal anesthesia for elective cesarean delivery. Anesthesiology. 2009;111:753–65.

    Article  CAS  PubMed  Google Scholar 

  27. Poterman M, Vos JJ, Vereecke HE, et al. Differential effects of phenylephrine and norepinephrine on peripheral tissue oxygenation during general anaesthesia: a randomised controlled trial. Eur J Anaesthesiol. 2015;32:571–80.

    Article  CAS  PubMed  Google Scholar 

  28. García MI, Romero MG, Cano AG, et al. Dynamic arterial elastance as a predictor of arterial pressure response to fluid administration: a validation study. Crit Care. 2014;18:626.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Monge García MI, Guijo González P, Gracia Romero M, et al. Effects of arterial load variations on dynamic arterial elastance: an experimental study. Br J Anaesth. 2017;118:938–46.

    Article  CAS  PubMed  Google Scholar 

  30. Cecconi M, Monge García MI, Gracia Romero M, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2015;120:76–84.

    Google Scholar 

  31. Massicotte L, Perrault MA, Denault AY, et al. Effects of phlebotomy and phenylephrine infusion on portal venous pressure and systemic hemodynamics during liver transplantation. Transplantation. 2010;89:920–7.

    Article  PubMed  Google Scholar 

  32. Kalmar AF, Allaert S, Pletinckx P, Maes JW, Heerman J, Vos JJ, Struys MMRF, Scheeren TWL. Phenylephrine increases cardiac output by raising cardiac preload in patients with anesthesia induced hypotension. J Clin Monit Comput. 2018. https://doi.org/10.1007/s10877-018-0126-3. (Epub ahead of print).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hamzaoui O, Georger JF, Monnet X, Ksouri H, Maizel J, Richard C, Teboul JL. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14:R142.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Trepte CJ, Eichhorn V, Haas SA, Richter HP, Goepfert MS, Kubitz JC, Goetz AE, Reuter DA. Thermodilution-derived indices for assessment of left and right ventricular cardiac function in normal and impaired cardiac function. Crit Care Med. 2011;39:2106–12.

    Article  PubMed  Google Scholar 

  35. Breukers RM, de Wilde RB, van den Berg PC, Jansen JR, Faes TJ, Twisk JW, Groeneveld AB. Assessing fluid responses after coronary surgery: role of mathematical coupling of global end-diastolic volume to cardiac output measured by transpulmonary thermodilution. Eur J Anaesthesiol. 2009;26:954–60.

    Article  PubMed  Google Scholar 

  36. Mallat J, Lemyze M, Salleron J, Benzidi Y, Barrailler S, Pepy F, Gasan G, Tronchon L, Thevenin D. Mathematical coupling of data between global-end diastolic volume index and cardiac index calculated by the PiCCO device: myth or reality? Minerva Anestesiol. 2014;80:996–1004.

    CAS  PubMed  Google Scholar 

  37. Curiel R, Pérez-González J, Brito N, et al. Positive inotropic effects mediated by alpha 1 adrenoceptors in intact human subjects. J Cardiovasc Pharmacol. 1989;14:603–15.

    Article  CAS  PubMed  Google Scholar 

  38. Brückner R, Meyer W, Mügge A, Schmitz W, Scholz H. Alpha-adrenoceptor-mediated positive inotropic effect of phenylephrine in isolated human ventricular myocardium. Eur J Pharmacol. 1984;99:345–7.

    Article  PubMed  Google Scholar 

  39. Kubitz JC, Annecke T, Forkl S, Kemming GI, Kronas N, Goetz AE, Reuter DA. Validation of pulse contour derived stroke volume variation during modifications of cardiac afterload. Br J Aneasth. 2007;98:591–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the staffs of the animal research laboratory for their support with the study.

Funding

This work was supported only by departmental funds of the Department of Anaesthesiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Contributions

KHW: study concept and design, acquisition, analysis and interpretation of data, draft of the manuscript, statistical analysis. MFG, SAN: acquisition, analysis and interpretation of data, critical revision of the manuscript for important intellectual content. CRB, MAP, MIMG: interpretation of data, critical revision of the manuscript for important intellectual content. HOP: statistical analysis, interpretation of data, critical revision of the manuscript for important intellectual content. CJCT, DAR: study concept and design, interpretation of data, critical revision of the manuscript for important intellectual content, study supervision.

Corresponding author

Correspondence to Karin H. Wodack.

Ethics declarations

Conflict of interest

DAR provided scientific advice for Pulsion/Getinge. MIMG is consultant for Edwards Lifesciences. All other authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wodack, K.H., Graessler, M.F., Nishimoto, S.A. et al. Assessment of central hemodynamic effects of phenylephrine: an animal experiment. J Clin Monit Comput 33, 377–384 (2019). https://doi.org/10.1007/s10877-018-0204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0204-6

Keywords

Navigation