Skip to main content
Log in

Combination of Hydro/Solvothermal Synthesis Routes for the Enhancement of \({\mathbf{S}\mathbf{n}\mathbf{O}}_{2}\) Nanostructures Photoactivity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A facile hydro-solvothermal (Hyd/Solv) route is proposed for the synthesis of tin oxide nanostructures \(\left({\text{S}\text{n}\text{O}}_{2} \text{N}\text{s}\right)\). Polycrystalline-tetragonal phases with different shape morphologies of \({\text{S}\text{n}\text{O}}_{2}\) and \(\text{S}\text{n}\text{O}\) Ns were observed by X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM). The energy gaps were tailored between 3.64 eV and 5.15 eV for the photodegradation of the methylene blue (MB) under sunlight exposure instead of an ultraviolet light source. Consequently, the photoefficiency of the nanostructured powder was comparable under 5 h of sunlight radiation. It thus may be concluded that the Hyd/Solv route confirms the strong dependence of photocatalysis on the synthesis technique mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data of this work are available by the corresponding author on a reasonable reason.

References

  1. Honarmand M, Golmohammadi M, H-Bakhtiari J, Environ Sci Pollut Res Int. 2021, 28(6):7123–7133.

    Article  CAS  PubMed  Google Scholar 

  2. Jin E M, Park J, Gu H B, Jeong S M, Mater Lett. 2015, 159:321–324.

    Article  CAS  Google Scholar 

  3. Wan W, Li Y, Ren X, Zhao Y, Gao F, Zhao H, Nanomater. 2018, 8(2):112 (2018).

  4. Cojocaru L, Olivier C, Toupance T, Sellier E, Hirsch L, J. Mater. Chem. A, 2013, 1(44):13789–13799.

    Article  CAS  Google Scholar 

  5. Wang X, Zheng T, Cheng Y J, Yin S, Xia Y, Ji Q, Xu Z, Liang S, Ma L, Zuo X, Meng J-Q, Zhu J, M-Buschbaum P, Nano Select, 2021, 2(3):642–653.

    Article  CAS  Google Scholar 

  6. He F, Xu Q, Zheng B, Zhang J, Wu Z, Zhong Y, Chen Y, Xiang W, Zhong B, Guo X. RSC Advances, 2020, 10(10), 6035–6042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagarani S, Sasikala G, Satheesh K, Yuvaraj M, Jayavel R., J Mater Sci: Mater Electron, 2018, 29(14):11738–11748.

    CAS  Google Scholar 

  8. Wang Z, Li X, Tan C K, Qian C, Grimsdale A C, Tok AIY, Appl. Surf. Sci. 2019, 470:800–806.

    Article  CAS  Google Scholar 

  9. Hu W, Quang N D, Majumder S, Jeong MJ, Park JH, Cho YJ, Kim S B, Lee K, Kim D, Chang H S, Appl. Surf. Sci. 2021, 560, 149904 (2021).

  10. Bhawna, Choudhary AK, Gupta A, Kumar S, Kumar P, Singh RP, Singh P, and Kumar V, Front. Nanotechnol. <background-color:#66FF66;direction:ltr;vertical-align:super;>2020</background-color:#66FF66;direction:ltr;vertical-align:super;><direction:ltr;vertical-align:super;>,</direction:ltr;vertical-align:super;> 2, 595352.

  11. Fatimah I, Purwiandono G, Hidayat H, Sagadevan S, Ghazali S A I S M, Oh W-C, Doong R-A., Nanomater, 2021, 11(11):3012.

    Article  CAS  Google Scholar 

  12. Khatoon Z, Fouad H, Alothman OY, Hashem M, Ansari ZA, Ansari SA, ACS Omega, 2020, 5(42):27645–27654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sagadevan S, Lett J A, Fatimah I, Lokanathan Y, Léonard E, Oh W C, Hossain M A M, Johan M R, Mater. Res. Express, 2021, 8:082001.

    Article  CAS  Google Scholar 

  14. B-Korczyc A, Mackiewicz E, R-Soliwoda K, Grobelny J, Celichowski G, RSC Adv, 2020, 10(63):38424–38436

    Article  Google Scholar 

  15. Timofeev VA, Mashanov VI, Nikiforov AI, Azarov IA, Loshkarev ID, Korolkov IV, Gavrilova TA, Yesin M, Chetyrin IA, Mater. Res. Express, 2020, 7(1):015027.

    Article  CAS  Google Scholar 

  16. Naz S, Javid I, Konwar S, Surana K, Singh P K, Sahni M, Bhattacharya B, SN Appl. Sci., 2020, 2:975.

    Article  CAS  Google Scholar 

  17. Ma T, Nikiel M, Thomas AG, Missous M, Lewis DJ, J Mater Sci, 2021, 56:15921–15936.

    Article  CAS  Google Scholar 

  18. Liu L-L, Li M-Y, Sun Y-H, Yang X-Y, Ma M-X, Wang H, An M-Z, Front Chem, 2022, 10:895749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dias JS, Batista FRM, Bacani R, Triboni E R. Sci Rep, 2020, 10:9446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng Y, Huang J, Li J, Cao L, Qi H, Micro Nano Lett, 2018,13(2):257–260 (2018).

  21. Xie H, Yin X, Chen P, Liu J, Yang C, Que W, Wang G, Mater Lett, 2019, 234:311–314.

    Article  CAS  Google Scholar 

  22. Meng L, Bu W, Li Y, Qin Q, Zhou Z, Hu C, Chuai X, Wang Ch, Sun P, Lu G, Sens Actuators B Chem, 2021, 342:130018.

    Article  CAS  Google Scholar 

  23. Ran Y, Li Y, Cui X, Lai T, Yao L, Zhao R, Wang L, Wang Y, J Mater Sci: Mater Electron, 2021, 32:8249–8264.

    CAS  Google Scholar 

  24. Kim SP, Choi MY, Choi HC, Mater Res Bull, 2016, 74:85–89.

    Article  CAS  Google Scholar 

  25. Prakash K, Kumar PS, Pandiaraj S, Saravanakumar K, Karuthapandian S, J Exp Nanosci, 2016, 11(14):1138–1155.

    Article  CAS  Google Scholar 

  26. Khairnar SD, Shirsath DS, Patil PS, and Shrivastava VS, SN Appl Sci, 2020, 2:822.

    Article  CAS  Google Scholar 

  27. Tammina SK, Mandal BK, Kadiyala NK, Environ. Nanotechnol. Monit. Manag., 2018, 10:339–350.

    Google Scholar 

  28. Kar A, Olszowka J, Sain S, Sloman SRI, Montes O, Fernandez A, Pradhan S K, Wheatley A E, J Alloys Compd, 2019, 810:151718.

    Article  CAS  Google Scholar 

  29. Wang J, Fan H Q, Yu H W, Wang X., J Mater Eng and Perform, 2015, 24:3426–3432.

    Article  CAS  Google Scholar 

  30. Patil GE, Kajale DD, Gaikwad VB, Jain G H, International Scholarly Research Notices, 2012, ID 275872 (2012).

  31. Arora K, Tomar M, Gupta V, Analyst, 2014, 139:837–849.

  32. Suthakaran S, Dhanapandian S, NKrishnakumar N, Ponpandian N, Mater Res Express, 2019, 6:0850i3.

    Article  CAS  Google Scholar 

  33. Abbas KN, Hussain NA, Nusseif, AD, Hussein, EH, Aziz, WJ, Salim AA, J Phys: Conf. Ser., 2020, 1484:012002.

    CAS  Google Scholar 

  34. Kamali AR, Divitini G, Ducati C, Fray DJ, Ceram Int, 2014, 40(6):8533–8538.

    Article  CAS  Google Scholar 

  35. Wang J, Liu S, Cao X, Wang Z, Guo Y, Li X, Liu C, Jiang W, Wang H, Wang N, Wu S, Tao H, Ding W, Appl Phys A, 2020, 126:44.

  36. Said M, Rizki WT, Asri WR, Desnelli D, Rachmat A, Hariani PL., Heliyon, 2022, 8(4): e09204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Chen N, Deng D, Xing X, Xiao X, Wang Y, Sens. Actuators B Chem., 2017, 238:264–273.

    Article  CAS  Google Scholar 

  38. Gao, KH, Lin T, Liu XD, Zhang XH, Li XN, Wu J, Liu YF, Wang XF, Chen YW, Ni B, Dai N, Chu JH, Solid State Commun, 2013,157:49–53.

    Article  CAS  Google Scholar 

  39. Jeun J H, Ryu HS, Hong SH, J Electrochem Soc., 2009, 156(9): J263.

    Article  CAS  Google Scholar 

  40. Song KC, Kang Y, Mater Lett, 2000, 42(5):283–289.

  41. Kumar R, Kumar G, Umar A, J Nanosci Nanotechnol, 2014, 14(2):1911–30.

    Article  CAS  PubMed  Google Scholar 

  42. Barbagiovanni EG, Reitano R, Franzò G, Strano V, Terrasi A, Mirabella S. Nanoscale, 2016, 8(2):995–1006.

    Article  CAS  PubMed  Google Scholar 

  43. Bhagwat AD, Sawant SS, Ankamwar BG, Mahajan CM, J Nano-Electron Phys, 2015, 7(4):04037.

    Google Scholar 

  44. Chakraborty S, Roy M, Saha R. Water Sci Technol, 2020, 81 (3):508–517.

    Article  PubMed  Google Scholar 

  45. Khaenamkaew P, Manop D, Tanghengjaroen C, Ayuthaya, W. Adv. Mater. Sci. Eng. 2020, ID 3852421.

  46. Suresh K C, Surendhiran S, Kumar P M, Kumar E R, Khadar Y A S, Balamurugan A, SN Applied Sciences, 2020, 2:1735.

    Article  CAS  Google Scholar 

  47. Viet P V, Thi C M, Hieu L V, J Nanomater 2016, ID 4231046.

  48. Kuriakose S, Satpati B, Mohapatra S, Phys. Chem. Chem. Phys., 2014, 16:12741–12749.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The submitted work was carried out at the Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq. The authors would like to thank and appreciate all the support provided by Mustansiriyah University (https://uomustansiriyah.edu.iq/).

Funding

No funding was provided for this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors shared in the submitted work. The first author carried out the practical experiments and writing the draft of the manuscript. Meanwhile, both co-authors supervised and reviewed the results entirely, gave their advices, and amended the final version. The whole text version was approved by all of them.

Corresponding author

Correspondence to Emad H. Hussein.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

There is no conflict of interest related to the submitted work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, N.A., Hussein, E.H. & Abbas, K.N. Combination of Hydro/Solvothermal Synthesis Routes for the Enhancement of \({\mathbf{S}\mathbf{n}\mathbf{O}}_{2}\) Nanostructures Photoactivity. J Clust Sci (2024). https://doi.org/10.1007/s10876-024-02621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10876-024-02621-0

Keywords

Navigation