Skip to main content

Advertisement

Log in

Systematic Designing and Optimization of Polymeric Nanoparticles Using Central Composite Design: A Novel Approach for Nose-to-Brain Delivery of Donepezil Hydrochloride

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The oral administration of donepezil hydrochloride has low brain targeting efficiency especially due to the presence of the blood–brain barrier leading to poor quality of treatment. Hence, this study aimed to systematically design chitosan nanoparticles for direct nose-to-brain delivery of donepezil hydrochloride using the Quality by Design approach for better transport to the brain avoiding the blood–brain barrier. The optimized formulation showed 180.2 nm average particle size and 0.282 polydispersity index, + 16.6 mV zeta potential, more than 90% drug release, and more than 70% drug permeation in 24 h. The studies on in-vitro drug release and ex-vivo permeation showed a sustained release pattern fulfilling Korsemeyer Peppa’s model. The confocal laser scanning micrographs showed the spherical nature of nanoparticles. The intranasal administration of donepezil hydrochloride nanoparticles in Wistar rats showed approximately 2.6 times more drug than donepezil hydrochloride solution given intranasally and approximately 10 times more drug than donepezil hydrochloride solution given orally in the brain respectively after 6 h. Further, confocal micrographs using Rhodamine B (fluorescent dye) loaded nanoparticles confirmed the localization of nanoparticles in the brain post-intranasal administration. The obtained results suggested that the chitosan nanoparticles are promising drug carriers for the nose-to-brain delivery of donepezil hydrochloride for the treatment of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig.3.
Fig.4.
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9
Fig 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

λmax :

Maximum wavelength

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

BBB:

Blood–brain barrier

CLS:

Confocal laser scanning

CNS:

Central nervous system

CR:

Concentration ratio

CS:

Chitosan

CT:

Crosslinking time

DDW:

Double distilled water

DH:

Donepezil hydrochloride

DoE:

Design of experiment

DPL:

Drug payload

FTIR:

Fourier transform infrared spectrophotometry

GAA:

Glacial acetic acid

HPLC:

High-performance liquid chromatography

IN:

Intranasal

NPs:

Nanoparticles

PBS:

Phosphate buffer saline

PDI:

Polydispersity index

PS:

Particle size

PY:

Process yield

RSD:

Relative standard deviation

RSM:

Response surface methodology

SD:

Standard deviation

SS:

Stirring speed

STK:

Stock solution

STPP:

Sodium tripolyphosphate

UV:

Ultraviolet

ZP:

Zeta potential

References

  1. Z. Sang, K. Wang, J. Dong, and L. Tang (2022). Eur. J. Med. Chem. 238, 114464.

    Article  CAS  PubMed  Google Scholar 

  2. A. Delport and R. Hewer (2022). Mol. Neurobiol. 59, 1–16.

    Article  Google Scholar 

  3. Y. Liu, G. Uras, I. Onuwaje, W. Li, H. Yao, S. Xu, X. Li, X. Li, J. Phillips, S. Allen, Q. Gong, H. Zhang, Z. Zhu, J. Liu, and J. Xu (2022). Eur. J. Med. Chem. 235, 114305.

    Article  CAS  PubMed  Google Scholar 

  4. S. Srivastava, R. Ahmad, and S. K. Khare (2021). Eur. J. Med. Chem. 216, 113320.

    Article  CAS  PubMed  Google Scholar 

  5. E. Se Thoe, A. Fauzi, Y. Q. Tang, S. Chamyuang, and A. Y. Y. Chia (2021). Life Sci. 276, 119129.

    Article  CAS  PubMed  Google Scholar 

  6. G. Marucci, M. Buccioni, D. D. Ben, C. Lambertucci, R. Volpini, F. Amenta, D. Dal Ben, C. Lambertucci, R. Volpini, and F. Amenta (2021). Neuropharmacology 190, 108352.

    Article  CAS  PubMed  Google Scholar 

  7. D. G. van Greunen, W. Cordier, M. Nell, C. van der Westhuyzen, V. Steenkamp, J. L. Panayides, and D. L. Riley (2017). Eur. J. Med. Chem. 127, 671–90.

    Article  PubMed  Google Scholar 

  8. G. Huang, J. Xie, S. Shuai, S. Wei, Y. Chen, Z. Guan, Q. Zheng, P. Yue, and C. Wang (2021). Int. J. Pharm. 594, 120182.

    Article  CAS  PubMed  Google Scholar 

  9. SMd. Bhavna, M. Ali, R. Ali, A. Bhatnagar, S. Baboota, and J. Ali (2014). Int. J. Biol. Macromol. 67, 418–25.

    Article  CAS  PubMed  Google Scholar 

  10. M. Yasir, A. Zafar, K. M. Noorulla, A. J. Tura, U. V. S. Sara, D. Panjwani, M. Khalid, M. J. Haji, W. G. Gobena, T. Gebissa, and D. D. Dalecha (2022). J. Drug Deliv. Sci. Technol. 75, 103631.

    Article  CAS  Google Scholar 

  11. I. F. F. de Souza, T. Q. dos Santos, R. V. Placido, B. A. Mangerona, F. C. Carvalho, V. B. Boralli, A. L. M. Ruela, and G. R. Pereira (2021). Colloids Surfaces B Biointerfaces 203, 111721.

    Article  PubMed  Google Scholar 

  12. S. Gänger and K. Schindowski (2018). Pharmaceutics 10, 116.

    Article  PubMed  PubMed Central  Google Scholar 

  13. D. Chenthamara, S. Subramaniam, S. G. Ramakrishnan, S. Krishnaswamy, M. M. Essa, F.-H. Lin, and M. W. Qoronfleh (2019). Biomater. Res. 23, 1–29.

    Article  Google Scholar 

  14. M. C. Bonferoni, S. Rossi, G. Sandri, F. Ferrari, E. Gavini, G. Rassu, and P. Giunchedi (2019). Pharmaceutics 11, 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Agrawal, S. S. Saraf, S. S. Saraf, S. G. Antimisiaris, M. B. Chougule, S. A. Shoyele, and A. Alexander (2018). J. Control. release 281, 139–77.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Garg, D. N. Kapoor, A. K. Sharma, and A. Bhatia (2022). Curr. Pharm. Des. 28, 619–41.

    Article  CAS  PubMed  Google Scholar 

  17. M. Kumar, R. Dogra, and U. K. Mandal (2022). J. Drug Deliv. Sci. Technol. 74, 103533.

    Article  CAS  Google Scholar 

  18. M. Kumar, P. Keshwania, S. Chopra, S. Mahmood, and A. Bhatia (2023). AAPS PharmSciTech 24, 1–26.

    CAS  Google Scholar 

  19. M. A. Mohammed, J. Syeda, K. M. Wasan, and E. K. Wasan (2017). Pharmaceutics 9, 53.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Y. Garg, G. Sharma, O. P. Katare, S. Chopra, and A. Bhatia, Available SSRN 4255393.

  21. J. Prabha, M. Kumar, D. Kumar, S. Chopra, and A. Bhatia (2023). Curr. Drug Deliv.

  22. M. Kumar, D. Kumar, Y. Garg, S. Mahmood, S. Chopra, and A. Bhatia (2023). Int. J. Biol. Macromol. 253, 127331.

    Article  CAS  PubMed  Google Scholar 

  23. M. Kumar, A. R. Hilles, S. H. A. Almurisi, A. Bhatia, and S. Mahmood (2023). JCIS Open 12, 100095.

    Article  Google Scholar 

  24. H. Wu, F. Fang, L. Zheng, W. Ji, M. Qi, M. Hong, and G. Ren (2020). J. Mol. Liq. 300, 112308.

    Article  CAS  Google Scholar 

  25. M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P. R. Fielden, S. W. Fogarty, N. J. Fullwood, and K. A. Heys (2014). Nat. Protoc. 9, 1771–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. B. C. Smith, Fundamentals of Fourier transform infrared spectroscopy (CRC Press, 2011).

    Book  Google Scholar 

  27. Sigma-Aldrich. (2018).

  28. D. Raja Azalea, M. Mohambed, S. Joji, C. Sankar, and B. Mishra (2012). Iran. J. Pharm. Sci. 8, 155–164.

    Google Scholar 

  29. S. Md, M. Ali, A. Bhatnagar, S. Baboota, J. K. Sahni, and J. Ali (2014). Sci. Adv. Mater. 6, 720–35.

    Article  Google Scholar 

  30. T. Gomathi, P. N. Sudha, J. A. K. Florence, J. Venkatesan, and S. Anil (2017). Int. J. Biol. Macromol. 104, 1820–32.

    Article  CAS  PubMed  Google Scholar 

  31. E. Fathima, I. Nallamuthu, T. Anand, M. Naika, and F. Khanum (2022). Int. J. Biol. Macromol. 208, 596–610.

    Article  CAS  PubMed  Google Scholar 

  32. M. E. Sayyed, M. A. El-Motaleb, I. T. Ibrahim, H. M. Rashed, M. A. El-Nabarawi, and M. A. Ahmed (2022). Eur. J. Pharm. Sci. 169, 106089.

    Article  CAS  PubMed  Google Scholar 

  33. G. A. Morris, J. Castile, A. Smith, G. G. Adams, and S. E. Harding (2011). Carbohydr. Polym. 84, 1430–4.

    Article  CAS  Google Scholar 

  34. H. Zhang, J. Jung, and Y. Zhao (2016). Carbohydr. Polym. 137, 82–91.

    Article  CAS  PubMed  Google Scholar 

  35. A. Rampino, M. Borgogna, P. Blasi, B. Bellich, and A. Cesàro (2013). Int. J. Pharm. 455, 219–28.

    Article  CAS  PubMed  Google Scholar 

  36. J. Wang, D. Chin, C. Poon, V. Mancino, J. Pham, H. Li, P.-Y. Ho, K. R. Hallows, and E. J. Chung (2021). J. Control. Release 329, 1198–209.

    Article  CAS  PubMed  Google Scholar 

  37. K. I. David, L. R. Jaidev, S. Sethuraman, and U. M. Krishnan (2015). Colloids Surf. B Biointerfaces 135, 689–98.

    Article  CAS  PubMed  Google Scholar 

  38. H. Yang, C. Tang, and C. Yin (2018). Acta Biomater. 73, 400–11.

    Article  CAS  PubMed  Google Scholar 

  39. R. A. Hashad, R. A. H. Ishak, S. Fahmy, S. Mansour, and A. S. Geneidi (2016). Int. J. Biol. Macromol. 86, 50–8.

    Article  CAS  PubMed  Google Scholar 

  40. S. M. Abdel-Hafez, R. M. Hathout, and O. A. Sammour (2018). Int. J. Biol. 108, 753–64.

    CAS  Google Scholar 

  41. E. De Giglio, A. Trapani, D. Cafagna, L. Sabbatini, and S. Cometa (2011). Anal. Bioanal. Chem. 400, 1997–2002.

    Article  PubMed  Google Scholar 

  42. C. Yuwei and W. Jianlong (2011). Chem. Eng. J. 168, 286–92.

    Article  Google Scholar 

  43. L. Sun, Y. Chen, Y. Zhou, D. Guo, Y. Fan, F. Guo, Y. Zheng, and W. Chen (2017). J. Pharm. Sci. 12, 418–23.

    Google Scholar 

  44. E. M. A. Hejjaji, A. M. Smith, and G. A. Morris (2018). Int. J. Biol. Macromol. 120, 1610–7.

    Article  CAS  PubMed  Google Scholar 

  45. B. Wu, H. Cui, X. Peng, J. Fang, Z. Zuo, J. Deng, and J. Huang (2014). Food Chem. Toxicol. 63, 18–29.

    Article  CAS  PubMed  Google Scholar 

  46. M. L. Boccia, P. Petrusz, K. Suzuki, L. Marson, and C. A. Pedersen (2013). Neuroscience 253, 155–64.

    Article  CAS  PubMed  Google Scholar 

  47. S. Barbieri, F. Buttini, A. Rossi, R. Bettini, P. Colombo, G. Ponchel, F. Sonvico, and G. Colombo (2015). Int. J. Pharm. 491, 99–104.

    Article  CAS  PubMed  Google Scholar 

  48. B. N. Matos, M. N. Pereira, M. O. de Bravo, M. Cunha-Filho, F. Saldanha-Araújo, T. Gratieri, and G. M. Gelfuso (2020). Int. J. Biol. Macromol. 154, 1265–75.

    Article  CAS  PubMed  Google Scholar 

  49. S. Shim and H. S. Yoo (2020). Mar. Drugs 18, 605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A. Yu, H. Shi, H. Liu, Z. Bao, M. Dai, D. Lin, D. Lin, X. Xu, X. Li, and Y. Wang (2020). Int. J. Pharm. 575, 118943.

    Article  CAS  PubMed  Google Scholar 

  51. G. A. Abdelbary and M. I. Tadros (2013). Int. J. Pharm. 452, 300–10.

    Article  CAS  PubMed  Google Scholar 

  52. I. Khalin, C. Severi, D. Heimburger, A. Wehn, F. Hellal, A. Reisch, A. S. Klymchenko, and N. Plesnila (2022). Nanomed. Nanotechnol. Biol. Med. 40, 102511.

    Article  CAS  Google Scholar 

  53. S. Aggarwal and S. Ikram (2022). Int. J. Biol. Macromol. 207, 205–21.

    Article  CAS  PubMed  Google Scholar 

  54. W. K. Delan, M. Zakaria, B. Elsaadany, A. N. ElMeshad, W. Mamdouh, and A. R. Fares (2020). Int. J. Pharm. 577, 119038.

    Article  CAS  PubMed  Google Scholar 

  55. Q. Liang, X. Sun, H. Raza, M. Aslam Khan, H. Ma, and X. Ren (2021). Ultrason. Sonochem. 80, 105830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. T. Liu, X. Wan, Z. Luo, C. Liu, P. Quan, D. Cun, and L. Fang (2019). Asian J. Pharm. Sci. 14, 183–92.

    Article  PubMed  Google Scholar 

  57. A. L. M. Ruela, E. C. de Figueiredo, M. B. de Araújo, F. C. Carvalho, and G. R. Pereira (2016). Eur. J. Pharm. Sci. 93, 114–22.

    Article  CAS  PubMed  Google Scholar 

  58. H. G. Brittain (2014). J. Mol. Struct. 1078, 207–12.

    Article  CAS  Google Scholar 

  59. M. Yasir and U. Sara (2014). Int. J. Pharm. Pharm. Sci. 6, 128–31.

    CAS  Google Scholar 

  60. S. N. Amena and S. H. Rizwan (2015). Int. J. Pharm. Pharm. Sci. 7, 204–10.

    CAS  Google Scholar 

  61. A. S. Tzeyung, S. Md, S. K. Bhattamisra, T. Madheswaran, N. A. Alhakamy, H. M. Aldawsari, and A. K. Radhakrishnan (2019). Pharmaceutics 11, 26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Fazil, S. Md, S. Haque, M. Kumar, S. Baboota, and kaur Sahni, J. and Ali, J. (2012). Eur. J. Pharm. Sci. 47, 6–15.

    Article  CAS  PubMed  Google Scholar 

  63. R. M. Aman, R. A. Zaghloul, and M. S. El-Dahhan (2021). Sci. Rep. 11, 2216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. S. Jose, B. C. Juna, T. A. Cinu, H. Jyoti, and N. A. Aleykutty (2016). Colloids Surf. B Biointerfaces 142, 307–14.

    Article  CAS  PubMed  Google Scholar 

  65. I. O. Wulandari, D. Santjojo, R. A. Shobirin, and A. Sabarudin (2017). Rasayan J. Chem 10, 1348–58.

    Google Scholar 

  66. P. Shah, J. Sarolia, B. Vyas, P. Wagh, K. Ankur, and M. A. Kumar (2021). Curr. Drug Deliv. 18, 805.

    CAS  PubMed  Google Scholar 

  67. Z. Zhou, Y. Liu, M. Zhang, C. Li, R. Yang, J. Li, C. Qian, and M. Sun (2019). Adv. Funct. Mater. 29, 1904144.

    Article  Google Scholar 

  68. K. Nakamura, N. Watanabe, H. Ohkawa, M. Ando, Y. Ogura, S. Funabiki, A. Kume, K. Urano, T. Osada, and K. Yamamura (2014). Patient Prefer. Adherence 8, 1223–1228.

    Article  PubMed  PubMed Central  Google Scholar 

  69. S. H. Akrawi, B. Gorain, A. B. Nair, H. Choudhury, M. Pandey, J. N. Shah, and K. N. Venugopala (2020). Pharmaceutics 12, 893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. E. Nagarajana, P. Shanmugasundarama, V. Ravichandirana, A. Vijayalakshmia, B. Senthilnathanb, and K. Masilamanib (2015). J. Appl. Pharm. Sci. 5, 20–5.

    Article  Google Scholar 

  71. C. Yu, M. Zhou, X. Zhang, W. Wei, X. Chen, and X. Zhang (2015). Nanoscale 7, 5683–90.

    Article  CAS  PubMed  Google Scholar 

  72. A Barhoum, ML García-Betancourt, H Rahier and G Van Assche, in A. Barhoum and A. S. H. B. T.-E. A. of N. and A. N. Makhlouf (eds), Micro and Nano Technologies (Elsevier, 2018), pp 255–78.

  73. S. Qian, Q. Wang, and Z. Zuo (2014). Expert Opin. Drug Metab. Toxicol. 10, 1491–508.

    Article  CAS  PubMed  Google Scholar 

  74. M. L. Formica, D. A. Real, M. L. Picchio, E. Catlin, R. F. Donnelly, and A. J. Paredes (2022). Appl. Mater. Today 29, 101631.

    Article  Google Scholar 

  75. M. Agarwal, M. K. Agarwal, N. Shrivastav, S. Pandey, R. Das, and P. Gaur (2018). Int. J. Life-Sciences Sci. Res. 4, 1713–20.

    Article  Google Scholar 

  76. S. Bohrey, V. Chourasiya, and A. Pandey (2016). Nano Converg. 3, 1–7.

    Article  Google Scholar 

  77. I. Y. Wu, S. Bala, N. Škalko-Basnet, and M. P. Di Cagno (2019). Eur. J. Pharm. Sci. 138, 105026.

    Article  CAS  PubMed  Google Scholar 

  78. K. Nagpal, S. K. Singh, and D. N. Mishra (2013). Chem. Pharm. Bull. 61, 258–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A gift sample of donepezil hydrochloride provided by Sun Pharma Pvt. Ltd., Palashbari, Sikkim, India is thankfully acknowledged. Support provided by Prof. (Dr.) Om Prakash Katare, Professor, University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh in completing experimental work is kindly acknowledged.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YG and GS: Material preparation, data collection, and analysis. MK: Collecting information, methodology. SC: Collecting information. OPK and AB: Revising draft, Conceptualization, and finalizing the manuscript.

Corresponding author

Correspondence to Amit Bhatia.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Ethical approval for the use of animals was granted by the Maharaja Ranjit Singh Punjab Technical University's Institutional Animal Ethics Committee (approval number MRSPTU/IAEC/2018/16) on 16/11/2018.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 566 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, Y., Kumar, M., Sharma, G. et al. Systematic Designing and Optimization of Polymeric Nanoparticles Using Central Composite Design: A Novel Approach for Nose-to-Brain Delivery of Donepezil Hydrochloride. J Clust Sci 35, 1007–1019 (2024). https://doi.org/10.1007/s10876-023-02528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02528-2

Keywords

Navigation