Skip to main content
Log in

Different Phase and Morphology of the MnO2 on Various Substrates and Electrolytes for Electrochemical Performance

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Now a days transition metal oxides (TMOs) have been expanded much more responsiveness as potential applicants for supercapacitors (SCs) applications due to their remarkable properties for example huge abundance, greater the value of theoretical specific capacitance, simply convenience. And environmentally safe nature. The different phase and morphology of the MnO2 nanoparticles (NPs) and nanorods (NRs) were synthesized through the co-precipitation and hydrothermal method respectively. The temperature effect was changed the morphology of the MnO2. The prepared MnO2 NPs and NRs structural, optical, morphological and elemental studies were analyzed by XRD, UV–Vis spectra, SEM, HR-TEM and EDAX. The electrochemical performance of the MnO2 NPs and NRs analyzed by CV, GCD and EIS spectra. This single phase and different morphology of the MnO2 NPs and NRs were tested for SC application in 3 M KOH and 0.5 M Na2SO4 electrolyte solution on different substrates such as the nickel foam (NF) and graphite foil (GF) respectively. The MnO2 NRs exposed better specific capacitance results than the MnO2 NPs in both substrates and electrolyte solutions. The cyclic stability performance of MnO2 NPs and NRs better performance on the NF substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. R. Biradar, S. V. Bhosale, P. P. Morajakar, and S. V. Bhosale (2022). Fuel 310.

    Article  CAS  Google Scholar 

  2. A. Kalair, N. Abas, M. S. Saleem, A. R. Kalair, and N. Khan (2020). Energy Storage 3, 135.

    Google Scholar 

  3. Z. Li, C. Wang, F. Ling, L. Wang, R. Bai, Y. Shao, Q. Chen, H. Yuan, Y. Yu, and Y. Tan (2022). Adv. Mater. 34, 2204214.

    Article  CAS  Google Scholar 

  4. K. Mensah-Darkwa, C. Zequine, P. K. Kahol, and R. K. Gupta (2019). Sustainability 11, 414.

    Article  CAS  Google Scholar 

  5. F. Musharavati and S. Khanmohammadi (2022). Int. J. Hydrog. Energy 47, 26715.

    Article  CAS  Google Scholar 

  6. M. F. Elmorshedy, M. R. Elkadeem, K. M. Kotb, I. B. M. Taha, and D. Mazzeo (2021). Energy Convers. Manag. 245.

    Article  Google Scholar 

  7. A. Riaz, M. R. Sarker, M. H. M. Saad, and R. Mohamed (2021). Sensors 21, 5041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Xu, K. Yin, J. Gu, Q. Li, Z. Fang, Z. Chen, Y. Wang, N. Qu, S. Li, Z. Xiao, and D. Wang (2022). Langmuir. https://doi.org/10.1021/acs.langmuir.2c01977.

    Article  PubMed  Google Scholar 

  9. X. N. Tang, S. K. Zhu, J. Ning, X. F. Yang, M. Y. Hu, and J. J. Shao (2021). N. Carbon Mater. 36, 702.

    Article  CAS  Google Scholar 

  10. A. Kumar, A. Thomas, A. Gupta, M. Garg, J. Singh, G. Perumal, E. Sujithkrishnan, P. Elumalai, and H. S. Arora (2021). J. Energy Storage 42.

    Article  Google Scholar 

  11. W. Zhao, L. Wei, Q. Fu, and X. Guo (2019). J. Power Sources 422, 73.

    Article  CAS  Google Scholar 

  12. L. Kouchachvili, W. Yaïci, and E. Entchev (2018). J. Power Sources 374, 237.

    Article  CAS  Google Scholar 

  13. S. Liu, L. Wei, and H. Wang (2020). Appl. Energy 278.

    Article  CAS  Google Scholar 

  14. J. G. Wang, F. Kang, and B. Wei (2015). Prog. Mater. Sci. 74, 51.

    Article  CAS  Google Scholar 

  15. R. B. Choudhary, S. Ansari, and M. Majumder (2021). Renew. Sustain. Energy Rev. 145.

    Article  CAS  Google Scholar 

  16. X. Ling, G. Zhang, Z. Long, X. Lu, Z. He, J. Li, Y. Wang, and D. Zhang (2021). J. Ind. Eng. Chem. 99, 317.

    Article  CAS  Google Scholar 

  17. J. Gao, H. Li, M. Li, G. Wang, Y. Long, P. Li, C. Li, and B. Yang (2021). Anal. Chim. Acta 1145, 103.

    Article  CAS  PubMed  Google Scholar 

  18. C. Hou, W. Yang, X. Xie, X. Sun, J. Wang, N. Naik, D. Pan, X. Mai, Z. Guo, F. Dang, and W. Du (2021). J. Colloid Interface Sci. 596, 396.

    Article  CAS  PubMed  Google Scholar 

  19. L. Zhang, Y. Tian, C. Song, H. Qiu, and H. Xue (2021). J. Alloys Compd. 859.

    Article  CAS  Google Scholar 

  20. G. S. Kumar, S. A. Reddy, H. Maseed, and N. R. Reddy (2020). Funct. Mater. Lett. 13, 1.

    Article  CAS  Google Scholar 

  21. S. K. Godlaveeti, H. Maseed, S. A. Reddy, and R. R. Nagireddy (2020). Adv. Nat. Sci. Nanosci. Nanotechnol. 11.

    Article  CAS  Google Scholar 

  22. S. K. Godlaveeti, H. Maseed, D. P. Shaik, E. A. Al-Ammar, A. M. Tighezza, M. Sillanpaa, A. R. Somala, and R. R. Nagireddy (2022). Int. J. Hydrog. Energy 47, 15571.

    Article  CAS  Google Scholar 

  23. B. Padmadevi, A. Pugazhendhi, A. S. Khalifa, R. Shanmuganathan, and T. Kalaivani (2021). Process Biochem. 110, 176.

    Article  CAS  Google Scholar 

  24. S. Pramila, V. L. Ranganatha, T. L. Soundarya, R. Ramu, G. Nagaraju, and C. Mallikarjunaswamy (2022). J. Clust. Sci. 33, 2233.

    Article  CAS  Google Scholar 

  25. S. K. Godlaveeti, A. R. Somala, S. S. Sana, M. Ouladsmane, A. A. Ghfar, and R. R. Nagireddy (2022). J. Clust. Sci. 33, 1635.

    Article  CAS  Google Scholar 

  26. G. Sreenivasa Kumar, N. Ramamanohar Reddy, B. Sravani, L. Subramanyam Sarma, T. Veera Reddy, V. Madhavi, and S. Adinarayana Reddy (2021). J. Clust. Sci. 32, 27.

    Article  CAS  Google Scholar 

  27. Lichchhavi, H. Lee, Y. Ohshita, A. K. Singh, and P. M. Shirage (2021). Langmuir 37, 1141.

  28. Y. Kumar, S. Chopra, A. Gupta, Y. Kumar, S. J. Uke, and S. P. Mardikar (2020). Mater. Sci. Energy Technol. 3, 566.

    CAS  Google Scholar 

  29. Y. Zhou, X. Cheng, B. Tynan, Z. Sha, F. Huang, M. S. Islam, J. Zhang, A. N. Rider, L. Dai, D. Chu, D. W. Wang, Z. Han, and C. H. Wang (2021). Carbon 184, 504.

    Article  CAS  Google Scholar 

  30. W. Yang, D. Peng, H. Kimura, X. Zhang, X. Sun, R. A. Pashameah, E. Alzahrani, B. Wang, Z. Guo, W. Du, and C. Hou (2022). Adv. Compos. Hybrid Mater. 5, 3146.

    Article  CAS  Google Scholar 

  31. C. Fang, H. Gujarati, F. Osinaga, V. Hsia, M. A. Cheney, and M. K. Kharel (2021). Res. Chem. Intermed. 47, 3673.

    Article  CAS  Google Scholar 

  32. D. Wu, X. Xie, J. Zhang, Y. Ma, C. Hou, X. Sun, X. Yang, Y. Zhang, H. Kimura, and W. Du (2022). Chem. Eng. J. 446.

    Article  CAS  Google Scholar 

  33. M. Rahmat, H. N. Bhatti, A. Rehman, H. Chaudhry, M. Yameen, M. Iqbal, S. H. Al-Mijalli, N. Alwadai, M. Fatima, and M. Abbas (2021). Arab. J. Chem. 14.

    Article  CAS  Google Scholar 

  34. R. Guo, L. Ni, H. Zhang, X. Gao, R. Momen, A. Massoudi, G. Zou, H. Hou, and X. Ji (2021). ACS Appl. Energy Mater. 4, 10940.

    Article  CAS  Google Scholar 

  35. Y. Park, A. Numan, N. Ponomarev, J. Iqbal, and M. Khalid (2021). J. Environ. Chem. Eng. 9.

    Article  CAS  Google Scholar 

  36. V. Sannasi and K. Subbian (2020). J. Mater. Sci. Mater. Electron. 31, 17120.

    Article  CAS  Google Scholar 

  37. S. Bashir, A. Jamil, A. Habib, S. M. Ibn Shamsah, and M. Shahid (2021). Ceram. Int. 47, 35224.

    Article  CAS  Google Scholar 

  38. S. K. Godlaveeti, S. Jangiti, A. R. Somala, H. Maseed, and R. R. Nagireddy (2021). J. Clust. Sci. 32, 703.

    Article  CAS  Google Scholar 

  39. A. K. Singh, D. Sarkar, G. G. Khan, and K. Mandal (2013). J. Mater. Chem. A 1, 12759.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author grateful thanks to RUSA Facility Lab for providing the electrochemical performance in Yogi Vemana University, Kadapa-516005. The work was funded by the Researchers Supporting Project Number (RSP2023R265) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamanohar Reddy Nagireddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godlaveeti, S.K., Komatikunta, V.K., Somala, A.R. et al. Different Phase and Morphology of the MnO2 on Various Substrates and Electrolytes for Electrochemical Performance. J Clust Sci 34, 2725–2736 (2023). https://doi.org/10.1007/s10876-023-02421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02421-y

Keywords

Navigation