Skip to main content
Log in

Investigation of the Peculiarities of Oxidation of Ti/Al Nanoparticles on Heating to Obtain TiO2/Al2O3 Composite Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The creation of new nanomaterials with improved characteristics, as well as the development of new approaches to obtain such materials is an urgent task in science and technology. One of the promising directions in obtaining improved nanomaterials is the use of precursors in the form of multicomponent metal nanoparticles. Thermal oxidation of bimetallic Ti/Al nanoparticles obtained by electrical explosion of wires was investigated in this work. Ti/Al nanoparticles have been found to be completely oxidized with the formation of composite TiO2/Al2O3 nanoparticles after calcination at 900 °C. The formation of TiO2 phase with a rutile structure on heating to 500 °C, and the formation of TiO2 phases with a rutile and anatase structure, as well as α-Al2O3 on heating to 700 °C have been established, in addition to the residue of unoxidized metals. Complete oxidation of Ti/Al nanoparticles occurs when heated to 900 °C. The photochemical activity of TiO2/Al2O3 composite nanoparticles obtained at 900 °C was studied. The degradation of methyl orange dye reached 55% under UV irradiation for 120 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Monsef, M. Ghiyasiyan-Arani, and M. Salavati-Niasari (2021). Design of magnetically recyclable ternary Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage. ACS Appl. Energy Mater. 4 (1), 680–695.

    Article  CAS  Google Scholar 

  2. M. Salavati-Niasari and F. Davar (2006). In situ one-pot template synthesis (IOPTS) and characterization of copper (II) complexes of 14-membered hexaaza macrocyclic ligand “3, 10-dialkyl-dibenzo-1, 3, 5, 8, 10, 12-hexaazacyclotetradecane.” Inorg. Chem. Commun. 9 (2), 175–179.

    Article  CAS  Google Scholar 

  3. S. Ahmadian-Fard-Fini, D. Ghanbari, O. Amiri, and M. Salavati-Niasari (2020). Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydrate Polymers 229, 115428.

    Article  CAS  PubMed  Google Scholar 

  4. M. Amiri, M. Salavati-Niasari, A. Pardakhty, M. Ahmadi, and A. Akbari (2017). Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater. Sci. Eng: C 76, 1085–1093.

    Article  CAS  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. S. Morassaei, O. Amiri, M. Salavati-Niasari, and L. K. Foong (2020). Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46 (11), 17186–17196.

    Article  CAS  Google Scholar 

  6. F. Motahari, M. R. Mozdianfard, and M. Salavati-Niasari (2015). Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Process Saf. Environ. Prot. 93, 282–292.

    Article  CAS  Google Scholar 

  7. S. Zinatloo-Ajabshir and M. Salavati-Niasari (2019). Preparation of magnetically retrievable CoFe2O4@ SiO2@ Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos. Part B Eng. 174, 106930.

    Article  CAS  Google Scholar 

  8. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, and M. Salavati-Niasari (2018). Nd2O3-SiO2 nanocomposites: a simple sonochemical preparation, characterization and photocatalytic activity. Ultrason. Sonochem. 42, 171–182.

    Article  CAS  PubMed  Google Scholar 

  9. F. Davar, M. Salavati-Niasari, and Z. Fereshteh (2010). Synthesis and characterization of SnO2 nanoparticles by thermal decomposition of new inorganic precursor. J. Alloys Compd. 496 (1–2), 638–643.

    Article  CAS  Google Scholar 

  10. M. Hassanpour, H. Safardoust-Hojaghan, and M. Salavati-Niasari (2017). Degradation of methylene blue and Rhodamine B as water pollutants via green synthesized Co3O4/ZnO nanocomposite. J. Mol. Liq. 229, 293–299.

    Article  CAS  Google Scholar 

  11. A. S. Lozhkomoev, E. A. Glazkova, O. V. Bakina, M. I. Lerner, I. Gotman, E. Y. Gutmanas, et al. (2016). Synthesis of core–shell AlOOH hollow nanospheres by reacting Al nanoparticles with water. Nanotechnology 27 (20), 205603.

    Article  CAS  PubMed  Google Scholar 

  12. A. S. Lozhkomoev, N. G. Rodkevich, A. B. Vorozhtsov, and M. I. Lerner (2020). Oxidation and oxidation products of encapsulated aluminum nanopowders. J. Nanopart. Res. 22 (1), 1–13.

    Article  Google Scholar 

  13. S. Lyu, Y. Sun, L. Ren, W. Xiao, and C. Ma (2017). Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti–Al multilayered composites. Intermetallics 90, 16–22.

    Article  CAS  Google Scholar 

  14. S. Djanarthany, J. C. Viala, and J. Bouix (2001). An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys. 72 (3), 301–319.

    Article  CAS  Google Scholar 

  15. M. Peters, J. Kumpfert, C. H. Ward, and C. Leyens (2003). Titanium alloys for aerospace applications. Adv. Eng. Mater. 5 (6), 419–427.

    Article  CAS  Google Scholar 

  16. W. Zhang, W. Li, H. Zhai, Y. Wu, S. Wang, G. Liang, and R. J. Wood (2020). Microstructure and tribological properties of laser in-situ synthesized Ti3Al composite coating on Ti-6Al-4V. Surf. Coatings Technol. 395, 125944.

    Article  CAS  Google Scholar 

  17. T. Zhang, G. Fan, K. Miao, K. Chen, Z. Pan, S. Chen, et al. (2017). Bimodal laminated Ti3Al matrix composite achieved by in situ formed Ti5Si3 reinforcements. Mater. Sci. Eng. A 707, 419–425.

    Article  CAS  Google Scholar 

  18. A. V. Bakulin, S. S. Kulkov, and S. E. Kulkova (2021). Adhesion properties of clean and doped Ti3Al/Al2O3 interface. Appl. Surf. Sci. 536, 147639.

    Article  CAS  Google Scholar 

  19. P. A. Chernavskii, N. V. Peskov, A. V. Mugtasimov, and V. V. Lunin (2007). Oxidation of metal nanoparticles: Experiment and model. Russ. J. Phys. Chem. B 1 (4), 394–411.

    Article  Google Scholar 

  20. W. Zhang, C. Li, and R. Li (2015). Sol–gel preparation of TiO2–Al2O3 composite materials to promote photocatalytic activity. Nanosci. Nanotechnol. Asia 5 (1), 8–14.

    Article  CAS  Google Scholar 

  21. W. J. Zhang and H. L. Xin (2012). Porous TiO2-Al2O3 photocatalyst: The effects of calcination time. Adv. Mater. Res. 496, 165–168.

    Article  CAS  Google Scholar 

  22. R. Ahmad, J. K. Kim, J. H. Kim, and J. Kim (2018). Effect of polymer template on structure and membrane fouling of TiO2/Al2O3 composite membranes for wastewater treatment. J. Ind. Eng. Chem. 57, 55–63.

    Article  CAS  Google Scholar 

  23. J. L. Luo, S. F. Wang, W. Liu, C. X. Tian, J. W. Wu, X. T. Zu, et al. (2017). Influence of different aluminum salts on the photocatalytic properties of Al doped TiO2 nanoparticles towards the degradation of AO7 dye. Sci. Rep. 7 (1), 1–16.

    Google Scholar 

  24. D. Zhao, C. Chen, Y. Wang, W. Ma, J. Zhao, T. Rajh, and L. Zang (2008). Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al (III)-modified TiO2: Structure, interaction, and interfacial electron transfer. Environ. Sci. Technol. 42 (1), 308–314.

    Article  CAS  PubMed  Google Scholar 

  25. C. Anderson and A. J. Bard (1997). Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J. Phys. Chem. B 101 (14), 2611–2616.

    Article  CAS  Google Scholar 

  26. J. Pei, W. Ma, R. Li, Y. Li, and H. Du (2015). Preparation and photocatalytic properties of TiO2–Al2O3 composite loaded catalysts. J Chem. https://doi.org/10.1155/2015/806568.

    Article  Google Scholar 

  27. M. Polat, A. M. Soylu, D. A. Erdogan, H. Erguven, E. I. Vovk, and E. Ozensoy (2015). Influence of the sol–gel preparation method on the photocatalytic NO oxidation performance of TiO2/Al2O3 binary oxides. Catal. Today 241, 25–32.

    Article  CAS  Google Scholar 

  28. F. Z. Yakdoumi and A. S. Hadj-Hamou (2020). Effectiveness assessment of TiO2-Al2O3 nano-mixture as a filler material for improvement of packaging performance of PLA nanocomposite films. J. Polym. Eng. 40 (10), 848–858.

    Article  CAS  Google Scholar 

  29. S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou, et al. (2008). Improvement in dye-sensitized solar cells employing TiO2 electrodes coated with Al2O3 by reactive direct current magnetron sputtering. J. Power Sour. 182 (1), 119–123.

    Article  CAS  Google Scholar 

  30. M. Andrianainarivelo, R. J. Corriu, D. Leclercq, P. H. Mutin, and A. Vioux (1997). Nonhydrolytic sol−gel process: Aluminum titanate gels. Chem. Mater. 9 (5), 1098–1102.

    Article  CAS  Google Scholar 

  31. E. Celik, I. Keskin, I. Kayatekin, F. A. Azem, and E. Özkan (2007). Al2O3–TiO2 thin films on glass substrate by sol–gel technique. Mater. Characteriz. 58 (4), 349–357.

    Article  CAS  Google Scholar 

  32. T. K. Vo (2022). Spray pyrolysis synthesis and UV-driven photocatalytic activity of mesoporous Al2O3@ TiO2 microspheres. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-18865-0.

    Article  Google Scholar 

  33. Y. F. Jatoi, M. Fiaz, and M. Athar (2021). Synthesis of efficient TiO2/Al2O3@ Cu (BDC) composite for water splitting and photodegradation of methylene blue. J. Aust. Ceram. Soc. 57 (2), 489–496.

    Article  CAS  Google Scholar 

  34. W. Chen, Y. Yamamoto, W. H. Peter, S. B. Gorti, A. S. Sabau, M. B. Clark, et al. (2011). Cold compaction study of Armstrong process® Ti–6Al–4V powders. Powder Technol. 214 (2), 194–199.

    Article  CAS  Google Scholar 

  35. C. Du, J. Xiao, B. Zhang, and H. Zhu (2021). Facile synthesis of fine Ti–Al intermetallic compound powders via sodiothermic reduction in molten CaCl2. Intermetallics 129, 107038.

    Article  CAS  Google Scholar 

  36. K. A. Annan, P. Daswa, K. Motumbo, and C. W. Siyasiya (2021). Influence of milling parameters on the structural and phase formation in Ti-20% Al alloy through mechanical milling. Mater. Today Proc. 38, 779–783.

    Article  CAS  Google Scholar 

  37. B. Liu, M. Wang, Y. Du, and J. Li (2020). Size-dependent structural properties of a high-Nb TiAl alloy powder. Materials 13 (1), 161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. W. Chen, J. Tang, X. Shi, N. Ye, Z. Yue, and X. Lin (2020). Synthesis and formation mechanism of high purity Ti3AlC2 powders by microwave sintering. Int. J. Appl. Ceram. Technol. 17 (2), 778–789.

    Article  CAS  Google Scholar 

  39. A. V. Pervikov, S. O. Kazantsev, A. S. Lozhkomoev, and M. I. Lerner (2020). Bimetallic Al/Ag, Al/Cu and Al/Zn nanoparticles with controllable phase compositions prepared by the electrical explosion of two wires. Powder Technol. 372, 136–147.

    Article  CAS  Google Scholar 

  40. A. V. Pervikov, K. V. Suliz, and M. I. Lerner (2020). Nanoalloying of clusters of immiscible metals and the formation of bimetallic nanoparticles in the conditions of non-synchronous explosion of two wires. Powder Technol. 360, 855–862.

    Article  CAS  Google Scholar 

  41. M. Lerner, A. Pervikov, E. Glazkova, N. Rodkevich, and N. Toropkov (2021). Electrical explosion synthesis, oxidation and sintering behavior of Ti–Al intermetallide powders. Metals 11 (5), 760.

    Article  CAS  Google Scholar 

  42. A. S. Lozhkomoev, A. V. Pervikov, S. O. Kazantsev, A. F. Sharipova, N. G. Rodkevich, N. E. Toropkov, et al. (2021). Synthesis of Fe/Fe3O4 core-shell nanoparticles by electrical explosion of the iron wire in an oxygen-containing atmosphere. J. Nanopart. Res. 23 (3), 1–12.

    Article  Google Scholar 

  43. S. Qiu and S. J. Kalita (2006). Synthesis, processing and characterization of nanocrystalline titanium dioxide. Mater. Sci. Eng. A 435, 327–332.

    Article  Google Scholar 

  44. Z. R. Yang, S. Q. Wang, X. H. Cui, Y. T. Zhao, M. J. Gao, and M. X. Wei (2008). Formation of Al3Ti/Mg composite by powder metallurgy of Mg–Al–Ti system. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/9/3/035005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. P. Urban, F. Ternero, E. S. Caballero, S. Nandyala, J. M. Montes, and F. G. Cuevas (2019). Amorphous Al–Ti powders prepared by mechanical alloying and consolidated by electrical resistance sintering. Metals 9 (11), 1140.

    Article  CAS  Google Scholar 

  46. V. P. Kobyakov and T. V. Barinova (2011). Combustion of TiO2-Al thermit mixtures containing C and Cs in air: Phase composition of products. Int. J. Self-Propag. High-Temp. Synth. 20 (3), 161–165.

    Article  CAS  Google Scholar 

  47. O. Rai, K. Park, L. Zhou, and M. R. Zachariah (2006). Understanding the mechanism of aluminium nanoparticle oxidation. Combust. Theory Modelling 10 (5), 843–859.

    Article  CAS  Google Scholar 

  48. V. Maurice, G. Despert, S. Zanna, P. Josso, M. P. Bacos, and P. Marcus (2007). XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys. Acta Mater. 55 (10), 3315–3325.

    Article  CAS  Google Scholar 

  49. M. Kamei (2008). Localization of the photocatalytic reaction on the grain boundary of bicrystalline TiO2. Appl. Phys. Express 1 (10), 101201.

    Article  Google Scholar 

  50. M. A. Ahmed and M. F. Abdel-Messih (2011). Structural and nano-composite features of TiO2–Al2O3 powders prepared by sol–gel method. J. Alloys Compd. 509 (5), 2154–2159.

    Article  CAS  Google Scholar 

  51. Q. Zhu, H. Duan, B. Lin, Y. Zhu, Y. Hu, and Y. Zhou (2019). Higher acetone conversion obtained over a TiO2–Pd bifunctional catalyst for liquid-phase synthesis of methyl isobutyl ketone: The role of Al2O3 support. Catal. Lett. 149 (9), 2636–2644.

    Article  CAS  Google Scholar 

  52. G. Urretavizcaya, A. L. Cavalieri, J. M. Lopez, I. Sobrados, and J. Sanz (1998). Thermal evolution of alumina prepared by the sol-gel technique. J. Mater. Synth. Process. 6 (1), 1–7.

    Article  CAS  Google Scholar 

  53. M. J. Velasco, F. Rubio, J. Rubio, and J. L. Oteo (1999). DSC and FT-IR analysis of the drying process of titanium alkoxide derived precipitates. Thermochimica Acta 326 (1–2), 91–97.

    Article  Google Scholar 

  54. A. A. Ismail, I. Abdelfattah, M. F. Atitar, L. Robben, H. Bouzid, S. A. Al-Sayari, and D. W. Bahnemann (2015). Photocatalytic degradation of imazapyr using mesoporous Al2O3–TiO2 nanocomposites. Sep. Purif. Technol. 145, 147–153.

    Article  CAS  Google Scholar 

  55. F. Li, et al. (2012). N-doped P25 TiO2–amorphous Al2O3 composites: One-step solution combustion preparation and enhanced visible-light photocatalytic activity. J. Hazard. Mater. 239, 118–127.

    Article  PubMed  Google Scholar 

  56. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, and M. Batzill (2014). Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci. Rep. 4 (1), 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

Ti–Al nanoparticles were obtained and studied within the framework of a project of the Russian Science Foundation (Grant No. 21-79-30006). The study of the photochemical activity of Ti-Al nanoparticle oxidation products was performed according to the Government research assignment for ISPMS SB RAS, project FWRW-2022-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lozhkomoev.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozhkomoev, A.S., Kazantsev, S.O., Bakina, O.V. et al. Investigation of the Peculiarities of Oxidation of Ti/Al Nanoparticles on Heating to Obtain TiO2/Al2O3 Composite Nanoparticles. J Clust Sci 34, 2167–2176 (2023). https://doi.org/10.1007/s10876-022-02382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02382-8

Keywords

Navigation