Skip to main content
Log in

Joint Strategy of PEG-PEI/CDs-E64d Nanoagents for Effective Low-Temperature Photothermal Therapy

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Near infrared (NIR)-triggered photothermal therapy (PTT) usually requires hyperthermia for effective tumor therapy, leading to side effects such as overheating damage. It is critical and challenging for the successful clinical application of PTT through achieving effective tumor therapy under mild temperature. Herein, a joint strategy of autophagy inhibition and lysosomal escape based on PEG-PEI/CDs-E64d nanoagents was designed using PEG as a carrier to combine PEI with “proton sponge” effect and autophagy inhibitor of E64d, which improved the sensitivity of tumor cells to treatment and the utilization of photothermal agent (carbon quantum dots, CDs), and were characterized in detail by transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), Zeta, Western blot, etc. The excellent photothermal effect, autophagy inhibition and lysosomal escape ability were proved in vitro experiments, and the results of in vivo experiment showed the effective and safe low-temperature PTT effect was achieved with tumor inhibition rate of 84.3% for 9 days of treatment at 42 °C. In general, the joint strategy we proposed provides a useful exploration for the clinical application of PTT.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Kim, Y. M. Lee, Y. Kang, and W. J. Kim (2014). Tumor-homing, size-tunable clustered nanoparticles for anticancer therapeutics. ACS Nano. 8 (9), 9358–9367. https://doi.org/10.1021/nn503349g.

    Article  CAS  PubMed  Google Scholar 

  2. B. P. Timko, T. Dvir, and D. S. Kohane (2010). Remotely triggerable drug delivery systems. Adv. Mater. 22 (44), 4925–4943. https://doi.org/10.1002/adma.201002072.

    Article  CAS  PubMed  Google Scholar 

  3. Q. Chen, C. Liang, X. Wang, J. He, Y. Li, and Z. Liu (2014). An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials. 35 (34), 9355–9362. https://doi.org/10.1016/j.biomaterials.2014.07.062.

    Article  CAS  PubMed  Google Scholar 

  4. R. Xiong, D. Hua, J. Van Hoeck, D. Berdecka, L. Leger, S. De Munter, J. C. Fraire, L. Raes, A. Harizaj, F. Sauvage, G. Goetgeluk, M. Pille, J. Aalders, J. Belza, T. Van Acker, E. Bolea-Fernandez, T. Si, F. Vanhaecke, W. H. De Vos, B. Vandekerckhove, J. van Hengel, K. Raemdonck, C. Huang, S. C. De Smedt, and K. Braeckmans (2021). Photothermal nanofibres enable safe engineering of therapeutic cells. Nat. Nanotechnol. 16 (11), 1281–1291. https://doi.org/10.1038/s41565-021-00976-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. X. Y. Qu, Y. Hong, H. Cai, X. Sun, Q. Shen, D. L. Yang, X. C. Dong, A. H. Jiao, P. Chen, and J. J. Shao (2022). Promoted intramolecular photoinduced-electron transfer for multi-mode imaging-guided cancer photothermal therapy. Rare. Met. 41 (1), 56–66. https://doi.org/10.1007/s12598-021-01795-0.

    Article  CAS  Google Scholar 

  6. Z. Zhang, J. Wang, and C. Chen (2013). Near-Infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv. Mater. 25 (28), 3869–3880. https://doi.org/10.1002/adma.201301890.

    Article  CAS  PubMed  Google Scholar 

  7. X. Wang, J. Zhang, Y. Wang, C. Wang, J. Xiao, Q. Zhang, and Y. Cheng (2016). Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterial. 81, 114–124. https://doi.org/10.1016/j.biomaterials.2015.11.037.

    Article  CAS  Google Scholar 

  8. G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang, Q. Zhang, W. Huang, P. Chen, J. Shao, and X. Dong (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS. Appl. Mater. Interfaces. 9 (46), 40077–40086. https://doi.org/10.1021/acsami.7b13421.

    Article  CAS  PubMed  Google Scholar 

  9. J. Gao, C. Wu, D. Deng, P. Wu, and C. Cai (2016). Direct synthesis of water-soluble aptamer-Ag2S quantum dots at ambient temperature for specific imaging and photothermal therapy of cancer. Adv. Healthc. Mater. 5 (18), 2437–2449. https://doi.org/10.1002/adhm.201600545.

    Article  CAS  PubMed  Google Scholar 

  10. D. Yoo, H. Jeong, S. H. Noh, J. H. Lee, and J. Cheon (2013). Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia. Angew. Chem. Int. Ed. 52 (49), 13047–13051. https://doi.org/10.1002/anie.201306557.

    Article  CAS  Google Scholar 

  11. N. Mizushima, B. Levine, A. M. Cuervo, and D. J. Klionsky (2008). Autophagy fights disease through cellular self-digestion. Nature. 451 (7182), 1069–1075. https://doi.org/10.1038/nature06639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. G. Gao, X. Sun, X. Liu, Y. W. Jiang, R. Tang, Y. Guo, F. G. Wu, and G. Liang (2021). Intracellular nanoparticle formation and hydroxychloroquine release for autophagy-inhibited mild-temperature photothermal therapy for tumors. Adv. Funct. Mater. 31 (34), 2102832. https://doi.org/10.1002/adfm.202102832.

    Article  CAS  Google Scholar 

  13. G. Gao, Y. W. Jiang, Y. Guo, H. R. Jia, X. Cheng, Y. Deng, X. W. Yu, Y. X. Zhu, H. Y. Guo, W. Sun, X. Liu, J. Zhao, S. Yang, Z. W. Yu, F. M. S. Raya, G. Liang, and F. G. Wu (2020). Enzyme-mediated tumor starvation and phototherapy enhance mild-temperature photothermal therapy. Adv. Funct. Mater. 30 (16), 1909391. https://doi.org/10.1002/adfm.201909391.

    Article  CAS  Google Scholar 

  14. G. Gao, Y. W. Jiang, W. Sun, Y. Guo, H. R. Jia, X. W. Yu, G. Y. Pan, and F. G. Wu (2019). Molecular targeting-mediated mild-temperature photothermal therapy with a smart albumin-based nanodrug. Small. 15 (33), 1900501. https://doi.org/10.1002/smll.201900501.

    Article  CAS  Google Scholar 

  15. X. Yi, Q. Y. Duan, and F. G. Wu (2021). Low-Temperature photothermal therapy: strategies and applications. Research. 2021, 9816594. https://doi.org/10.34133/2021/9816594.

  16. H. Chaachouay, P. Ohneseit, M. Toulany, R. Kehlbach, G. Multhoff, and H. P. Rodemann (2011). Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiother. Oncol. 99 (3), 287–292. https://doi.org/10.1016/j.radonc.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  17. M. F. Wei, M. W. Chen, K. C. Chen, P. J. Lou, S. Y. F. Lin, S. C. Hung, M. Hsiao, C. J. Yao, and M. J. Shieh (2014). Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy. 10 (7), 1179–1192. https://doi.org/10.4161/auto.28679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Li, N. Hou, A. Faried, S. Tsutsumi, and H. Kuwano (2010). Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. Eur. J. Cancer. 46 (10), 1900–1909. https://doi.org/10.1016/j.ejca.2010.02.021.

    Article  CAS  PubMed  Google Scholar 

  19. M. E. Davis, Z. Chen, and D. M. Shin (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug. Discov. 7 (9), 771–782. https://doi.org/10.1038/nrd2614.

    Article  CAS  PubMed  Google Scholar 

  20. G. Kroemer, G. Marino, and B. Levine (2010). Autophagy and the integrated stress response. Mol. Cell. 40 (2), 280–293. https://doi.org/10.1016/j.molcel.2010.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. J. A. Rudnick, T. Monkkonen, F. A. Mar, J. M. Barnes, H. Starobinets, J. Goldsmith, S. Roy, S. B. Eguiguren, V. M. Weaver, and J. Debnath (2021). Autophagy in stromal fibroblasts promotes tumor desmoplasia and mammary. Gene. Dev. 35 (13–14), 963–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. P. M. Yang, Y. L. Liu, Y. C. Lin, C. T. Shun, M. S. Wu, and C. C. Chen (2010). Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies. Cancer. Res. 70 (19), 7699–7709. https://doi.org/10.1158/0008-5472.can-10-1626.

    Article  CAS  PubMed  Google Scholar 

  23. Z. G. Movahed, R. Yarani, P. Mohammadi, and K. Mansouri (2021). Sustained oxidative stress instigates differentiation of cancer stem cells into tumor endothelial cells: pentose phosphate pathway, reactive oxygen species and autophagy crosstalk. Biomed. Pharmacother. 139, 11643. https://doi.org/10.1016/j.biopha.2021.111643.

    Article  CAS  Google Scholar 

  24. Z. Zhou, Y. Yan, K. Hu, Y. Zou, Y. Li, R. Ma, Q. Zhang, and Y. Cheng (2017). Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials. 141, 116–124. https://doi.org/10.1016/j.biomaterials.2017.06.030.

    Article  CAS  PubMed  Google Scholar 

  25. X. Zhang, X. Zeng, X. Liang, Y. Yang, X. Li, H. Chen, L. Huang, L. Mei, and S. S. Feng (2014). The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials. 35 (33), 9144–9154. https://doi.org/10.1016/j.biomaterials.2014.07.028.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Xu, H. Yu, H. Qin, J. Kang, C. Yu, J. Zhong, J. Su, H. Li, and L. Sun (2012). Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett. 314 (2), 232–243. https://doi.org/10.1016/j.canlet.2011.09.034.

    Article  CAS  PubMed  Google Scholar 

  27. M. Tamai, K. Matsumoto, S. Omura, I. Koyama, Y. Ozawa, and K. Hanada (1986). In vitro and in vivo inhibition of cysteine proteinases by EST, a new analog of E-64. J. Pharmacobio-Dyn. 9 (8), 672–677. https://doi.org/10.1248/bpb1978.9.672.

    Article  CAS  PubMed  Google Scholar 

  28. I. Tanida, N. Minematsu-Ikeguchi, T. Ueno, and E. Kominami (2005). Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 1 (2), 84–91. https://doi.org/10.4161/auto.1.2.1697.

    Article  CAS  PubMed  Google Scholar 

  29. M. Wan, H. Chen, Q. Wang, Q. Niu, P. Xu, Y. Yu, T. Zhu, C. Mao, and J. Shen (2019). Bio-inspired nitric-oxide-driven nanomotor. Nat. Commun. 10 (1), 1–11. https://doi.org/10.1038/s41467-019-08670-8.

    Article  CAS  Google Scholar 

  30. L. Rao, L. L. Bu, B. Cai, J. H. Xu, A. Li, W. F. Zhang, Z. J. Sun, S. S. Guo, W. Liu, T. H. Wang, and X. Z. Zhao (2016). Cancer Cell Membrane-Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Adv. Mater. 28 (18), 3460–3466. https://doi.org/10.1002/adma.201506086.

    Article  CAS  PubMed  Google Scholar 

  31. N. Bertrand, J. Wu, X. Xu, N. Kamaly, and O. C. Farokhzad (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug. Delivery. Rev. 66, 2–25. https://doi.org/10.1016/j.addr.2013.11.009.

    Article  CAS  Google Scholar 

  32. G. Hartmann, R. D. Weeratna, Z. K. Ballas, P. Payette, S. Blackwell, I. Suparto, W. L. Rasmussen, M. Waldschmidt, D. Sajuthi, R. H. Purcell, H. L. Davis, and A. M. Krieg (2000). Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164 (3), 1617–1624. https://doi.org/10.4049/jimmunol.164.3.1617.

    Article  CAS  PubMed  Google Scholar 

  33. X. Sun, X. Yan, O. Jacobson, W. Sun, Z. Wang, X. Tong, Y. Xia, D. Ling, and X. Chen (2017). Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics. 7(2), 319–328. https://www.thno.org/v07p0319.htm.

  34. M. R. Horsman and P. Vaupel (2016). Pathophysiological Basis for the Formation of the Tumor Microenvironment. Front. Oncol. 6, 66. https://doi.org/10.3389/fonc.2016.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Z. Guo, M. Chen, C. Peng, S. Mo, C. Shi, G. Fu, X. Wen, R. Zhuang, X. Su, T. Liu, N. Zheng, and X. Zhang (2018). pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics. Biomaterials. 179, 134–143. https://doi.org/10.1016/j.biomaterials.2018.06.040.

    Article  CAS  PubMed  Google Scholar 

  36. M. M. Wan, T. T. Xu, B. Chi, M. Wang, Y. Huang, Q. Wang, T. Li, W. Q. Yan, H. Chen, P. Xu, C. Mao, B. Zhao, J. Shen, H. Xu, and D. Q. Shi (2019). A safe and efficient strategy for the rapid elimination of blood lead in vivo based on a capture-fix-separate mechanism. Angew. Chem. Int. Ed. 58 (31), 10582–10586. https://doi.org/10.1002/anie.201904044.

    Article  CAS  Google Scholar 

  37. D. Kliosnky, et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 12, 1–222. https://doi.org/10.1080/15548627.2015.1100356.

  38. Z. Wan, H. Mao, M. Guo, Y. Li, A. Zhu, H. Yang, H. He, J. Shen, L. Zhou, Z. Jiang, C. Ge, X. Chen, X. Yang, G. Liu, and H. Chen (2014). Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Theranostics. 4(4), 399–411. https://www.thno.org/v04p0399.htm.

  39. S. D. Perrault, C. Walkey, T. Jennings, H. C. Fischer, and W. C. W. Chan (2009). Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9 (5), 1909–1915. https://doi.org/10.1021/nl900031y.

    Article  CAS  PubMed  Google Scholar 

  40. D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro Gonzalez, A. Benayas, J. L. Plaza, E. Martin Rodriguez, and J. Garcia Sole (2014). Nanoparticles for photothermal therapies. Nanoscale. 6 (16), 9494–9530. https://doi.org/10.1039/c4nr00708e.

    Article  CAS  PubMed  Google Scholar 

  41. L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek (2011). A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 7 (2), 169–183. https://doi.org/10.1002/smll.201000134.

    Article  CAS  PubMed  Google Scholar 

  42. F. Janku, D. J. McConkey, D. S. Hong, and R. Kurzrock (2011). Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol. 8 (9), 528–539. https://doi.org/10.1038/nrclinonc.2011.71.

    Article  CAS  PubMed  Google Scholar 

  43. B. Wang, H. Song, X. Qu, J. Chang, B. Yang, and S. Lu (2021). Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord. Chem. Rev. 442, 214010. https://doi.org/10.1016/j.ccr.2021.214010.

    Article  CAS  Google Scholar 

  44. H. Yu, X. Lv, L. Wu, B. Li, K. Huang, Y. Huang, Q. Zhang, C. Mei, X. Ren, R. Zhou, H. Luo, P. Pang, and H. Shan (2020). Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale. 12 (33), 17222–17237. https://doi.org/10.1039/d0nr01236j.

    Article  CAS  Google Scholar 

  45. D. Pei and M. Buyanova (2019). Overcoming endosomal entrapment in drug delivery. Bioconjugate Chem. 30 (2), 273–283. https://doi.org/10.1021/acs.bioconjchem.8b00778.

    Article  CAS  Google Scholar 

  46. S. Marrache and S. Dhar (2012). Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. P. Natl. Acad. Sci. USA 109 (40), 16288–16293. https://doi.org/10.1073/pnas.1210096109.

    Article  Google Scholar 

  47. C. Yang, W. Cheng, P. Y. Teo, A. C. Engler, D. J. Coady, J. L. Hedrick, and Y. Y. Yang (2013). Mitigated cytotoxicity and tremendously enhanced gene transfection efficiency of PEI through facile one-step carbamate modification. Adv. Healthcare. Mater. 2 (10), 1304–1308. https://doi.org/10.1002/adhm.201300046.

    Article  CAS  Google Scholar 

  48. X. Tu, L. Wang, Y. Cao, Y. Ma, H. Shen, M. Zhang, and Z. Zhang (2016). Efficient cancer ablation by combined photothermal and enhanced chemo-therapy based on carbon nanoparticles/doxorubicin@SiO2 nanocomposites. Carbon. 97, 35–44. https://doi.org/10.1016/j.carbon.2015.05.043.

    Article  CAS  Google Scholar 

  49. H. Wang, J. Di, Y. Sun, J. Fu, Z. Wei, H. Matsui, and A. d. C. Alonso, and S. Zhou, (2015). Biocompatible PEG-Chitosan@Carbon dots hybrid nanogels for two-photon fluorescence imaging, Near-Infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv. Funct. Mater. 25 (34), 5537–5547. https://doi.org/10.1002/adfm.201501524.

    Article  CAS  Google Scholar 

  50. K. Han, W. Y. Zhang, J. Zhang, Q. Lei, S. B. Wang, J. W. Liu, X. Z. Zhang, and H. Y. Han (2016). Acidity-triggered tumor-targeted chimeric peptide for enhanced intra-nuclear photodynamic therapy. Adv. Funct. Mater. 26 (24), 4351–4361. https://doi.org/10.1002/adfm.201600170.

    Article  CAS  Google Scholar 

  51. X. Li, R. Wu, H. Chen, T. Li, H. Jiang, X. Xu, X. Tang, M. Wan, C. Mao, and D. Shi (2021). Near-Infrared Light-Driven Multifunctional Tubular Micromotors for Treatment of Atherosclerosis. Acs Appl. Mater. Interfaces. 13 (26), 30930–30940. https://doi.org/10.1021/acsami.1c03600.

    Article  CAS  PubMed  Google Scholar 

  52. M. Wan, Q. Wang, R. Wang, R. Wu, T. Li, D. Fang, Y. Huang, Y. Yu, L. Fang, X. Wang, Y. Zhang, Z. Miao, B. Zhao, F. Wang, C. Mao, Q. Jiang, X. Xu, and D. Shi (2020). Platelet-derived porous nanomotor for thrombus therapy. Sci. Adv. 6(22), eaaz9014.

  53. U. Prabhakar, H. Maeda, R. K. Jain, E. M. Sevick-Muraca, W. Zamboni, O. C. Farokhzad, S. T. Barry, A. Gabizon, P. Grodzinski, and D. C. Blakey (2013). Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73 (8), 2412–2417. https://doi.org/10.1158/0008-5472.can-12-4561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. B. A. Chabner and T. G. Roberts (2005). Timeline chemotherapy and the war on cancer. Nat. Rev. Cancer. 5 (1), 65–72. https://doi.org/10.1038/nrc1529.

    Article  CAS  PubMed  Google Scholar 

  55. H. Maeda (2015). Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliver. Rev. 91, 3–6. https://doi.org/10.1016/j.addr.2015.01.002.

    Article  CAS  Google Scholar 

  56. H. Wang, Z. Wei, H. Matsui, and S. Zhou (2014). Fe3O4/carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst. J. Mater. Chem. A. 2 (38), 15740–15745. https://doi.org/10.1039/c4ta03130j.

    Article  CAS  Google Scholar 

  57. D. J. Stewart, R. Konnan, T. A. Grusenmeyer, J. M. Artz, S. L. Long, Z. Yu, T. M. Cooper, J. E. Haley, and L. S. Tan (2018). Effects of intramolecular hydrogen bonding and sterically forced non-coplanarity on organic donor/acceptor two-photon-absorbing molecules. Phys. Chem. Chem. Phys. 20 (29), 19398–19407. https://doi.org/10.1039/c8cp02647e.

    Article  CAS  PubMed  Google Scholar 

  58. R. P. Velasco, U. Chaikledkaew, C. Y. Myint, R. Khampang, S. Tantivess, and Y. Teerawattananon (2013). Advanced health biotechnologies in Thailand: redefining policy directions. J. Transl. Med. 11, 1. https://doi.org/10.1186/1479-5876-11-1.

    Article  PubMed  PubMed Central  Google Scholar 

  59. D. M. Waag, M. J. McCluskie, N. L. Zhang, and A. M. Krieg (2006). A CpG oligonucleotide can protect mice from a low aerosol challenge dose of Burkholderia mallei. Infect. Immun. 74 (3), 1944–1948. https://doi.org/10.1128/iai.74.3.1944-1948.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. P. Wu, D. Deng, J. Gao, and C. Cai (2016). Tubelike gold sphere-attapulgite nanocomposites with a high photothermal conversion ability in the Near-Infrared region for enhanced cancer photothermal therapy. ACS Appl. Mater. Interfaces. 8 (16), 10243–10252. https://doi.org/10.1021/acsami.6b02270.

    Article  CAS  PubMed  Google Scholar 

  61. Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, and L. Lu (2013). Dopamine-melanin colloidal nanospheres: an efficient Near-Infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25 (9), 1353–1359. https://doi.org/10.1002/adma.201204683.

    Article  CAS  PubMed  Google Scholar 

  62. D. K. Roper, W. Ahn, and M. Hoepfner (2007). Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C. 111 (9), 3636–3641. https://doi.org/10.1021/jp064341w.

    Article  CAS  Google Scholar 

  63. H. Duan and S. Nie (2007). Cell penetrating quantum dots based on multivalent and endosome disrupting surface coatings. J. Am. Chem. Soc. 129 (11), 3333–3338. https://doi.org/10.1021/ja068158s.

    Article  CAS  PubMed  Google Scholar 

  64. R. T. Lima, D. Sousa, A. M. Paiva, A. Palmeira, J. Barbosa, M. Pedro, M. M. Pinto, E. Sousa, and M. H. Vasconcelos (2016). Modulation of autophagy by a thioxanthone decreases the viability of melanoma cells. Molecules. 21 (10), 1343. https://doi.org/10.3390/molecules21101343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (No.: 22175096), Social Development Project of Jiangsu Natural Science Foundation (No.: BE2019744), Collaborative Innovation Center of Biomedical Functional Materials, the Priority Academic Program Development of Jiangsu Higher Education Institution.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiahong Zhou or Wenbo Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, J., Zhang, Y. et al. Joint Strategy of PEG-PEI/CDs-E64d Nanoagents for Effective Low-Temperature Photothermal Therapy. J Clust Sci 34, 865–880 (2023). https://doi.org/10.1007/s10876-022-02262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02262-1

Keywords

Navigation