Skip to main content
Log in

An Abundance of Extremely Large Clusters as a Target for Intense Laser-Matter Interaction

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The advent of very intense, short-pulse lasers changed dramatically the field of laser-matter interaction. The interest in new forms of target brought clusters to the forefront as a very promising and unique medium. Here, extremely large Xe or \({\text{CO}}_2\) clusters embedded in an abundance of smaller ones were formed and subsequently irradiated by intense laser pulses (\(\lesssim 10^{19}\,{\text{W}}/{\text{cm}}^2\)) to demonstrate the specific character of such a medium and its suitability for intense laser-matter interaction. Emission of short-wavelength radiation quantified in the spectral range known as the “water window” constituted the reference for the target performance. The clusters were formed in a double-stream gas-puff equipped with a gas reservoir cooled down to 245 K and backed by a low-to-moderate pressure of \(\le 12 \,{\text{bar}}\). The obtained atomic/molecular compounds, mostly of an irregular shape and of an average diameter \(\simeq 2.4 \pm 0.5 \,\upmu {\text{m}}\) in the case of Xe and \(\simeq 2.0\pm 0.4 \,\upmu {\text{m}}\) for \({\text{CO}}_2\), have been imaged by optical microscopy while the size was determined by the standard scattering method. A scenario explaining the formation of such clusters has been proposed. The interaction results show that a photon/particle source can be copious when based on the developed target technology with an abundance of the extremely large clusters. These clusters enable also the experiments with a single-cluster target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data included in the manuscript and the supplemental material is available any time after contacting one of the authors.

References

  1. T. Ditmire, T. Donnelly, A. M. Rubenchik, R. W. Falcone, M. D. Perry (1996). Phys. Rev. A 53, 3379.

    Article  CAS  PubMed  Google Scholar 

  2. T. Ditmire (1997). Contemp. Phys. 38, 315. https://doi.org/10.1080/001075197182298.

    Article  CAS  Google Scholar 

  3. B. M. Smirnov (1994). Phys. Uspekhi 40, 1117.

    Article  Google Scholar 

  4. J. Zweiback, T. Ditmire, A. M. Rubenchik, A. Komashko, and M. D. Perry (1998). Experimental Observation of Resonance Effects in Intensely Irradiated Atomic Clusters, Lawrence Livermore National Laboratory Report UCRL-JC-129764.

  5. S.Dobosz, M. Schmidt, M. Perdrix, P. Meynadier, O. Gobert, D. Normand, A. Ya. Faenov, A. I. Magunov, T. A. Pikuz, I. Yu. Skobelev, and N. E. Andreev (1998). JETP Lett. 68(6), 485.

    Article  Google Scholar 

  6. N. L. Kugland, P. Neumayer, T. Döppner, H.-K. Chung, C. G. Constantin, F. Girard, S. H. Glenzer, A. Kemp, and C. Niemann (2008). Rev. Sci. Instrum. 79, 10E917. https://doi.org/10.1063/1.2955709.

    Article  CAS  PubMed  Google Scholar 

  7. F. Dorchies, F. Blasco, C. Bonté, T. Caillaud, C. Fourment, and O. Peyrusse (2008). Phys. Rev. Lett. 100, 205002.

    Article  CAS  PubMed  Google Scholar 

  8. A. Rose (2019). Clusters. (Encyclopedia Britannica 2019). https://www.britannica.com/science/cluster

  9. D. Rupp, et al. (2012). New J. Phys. 14, 055016. https://doi.org/10.1088/1367-2630/14/5/055016

    Article  CAS  Google Scholar 

  10. T. Sokollik, T. Paasch-Colberg, K. Gorling, U. Eichmann, M. Schnürer, S. Steinke, P. V. Nickles, A. Andreev, and W. Sandner (2010). New J.Phys. 12, 113013. https://doi.org/10.1088/1367-2630/12/11/113013

    Article  CAS  Google Scholar 

  11. F. Jin, K. Gabel, M.C. Richardson, M. Kado, A.F. Vasil’ev, and D. Salzmann, in Proc. SPIE, Applications of Laser Plasma Radiation (2015), (1 February 1994). https://doi.org/10.1117/12.167993

  12. D. Rupp, Ionization and plasma dynamics of single large xenon clusters in superintense XUV pulses. (Springer Theses, Springer International Publishing Switzerland, 2016); ISBN 978-3-319-28647-1.

  13. Y. Hayashi, Y. Fukuda, A. Ya. Faenov, M. Kando, K. Kawase, T. A. Pikuz, T. Homma, H. Daido, S. V. Bulanov (2010). Jap. J. Appl. Phys. 49, 126401.

    Article  Google Scholar 

  14. A. S. Boldarev, V. A. Gasilov, A. Ya. Faenov, Y. Fukuda, and K. Yamakawa (2006). Rev. Sci. Instrum. 77, 083112.

    Article  Google Scholar 

  15. E. Parra, I. Alexeev, J. Fan, J. K. Y. Kim, S. J. McNaught, and H. M. Milchberg (2003). J. Opt. Soc. Am. B 20, 118.

    Article  CAS  Google Scholar 

  16. E. Parra, I. Alexeev, J. Fan, J. K. Y. Kim, S. J. McNaught, and H. M. Milchberg (2000). Phys. Rev. E 62, R5931-4.

    Article  Google Scholar 

  17. S. J. McNaught, J. Fan, E. Parra, and H. M. Milchberg (2001). Appl. Phys. Lett. 79, 4100. https://doi.org/10.1063/1.1426266

    Article  CAS  Google Scholar 

  18. L. S. Bartell (1990). J. Chem. Phys. 94, 5102.

    Article  CAS  Google Scholar 

  19. Y. Tao, R. Hagmeijer, E. T. A. van der Weide, H. M. Bastaens, and K.-J. Boller (2016). J. Appl. Phys. 119, 164901. https://doi.org/10.1063/1.4947187

    Article  CAS  Google Scholar 

  20. L. S. Bartell (1986). Chem. Rev. 86, 491.

    Article  CAS  Google Scholar 

  21. J. C. Phillips (1986). Chem. Rev. 86, 619.

    Article  CAS  Google Scholar 

  22. D. Rupp et al. (2014). J. Chem. Phys. 141, 044306. https://doi.org/10.1063/1.4890323

    Article  CAS  PubMed  Google Scholar 

  23. L. Shao-Hui, L. Bing-Chen, N. Guo-Quan, and X. Zhi-Zhan (2003). Chin. Phys. 12, 856.

    Article  Google Scholar 

  24. H. Fiedorowicz, A. Bartnik, R. Jarocki, R. Rakowski, and M. Szczurek (2000). Appl. Phys. B 70, 305. https://doi.org/10.1007/s003400050050

    Article  CAS  Google Scholar 

  25. A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, M. Szczurek, and P. W. Wachulak (2011). Nucl. Instr. Meth. Phys. Res. A 647, 125.

    Article  CAS  Google Scholar 

  26. P. Wachulak, M. Duda, A. Bartnik, Ł. Wȩgrzyński, T. Fok, and H. Fiedorowicz (2019). APL Photonics 4, 030807.

    Article  Google Scholar 

  27. S. Fourmaux, S. Payeur, S. A. Alexandrov, C. Serbanescu, F. Martin, T. Ozaki, A. Kudryashov, and J.-C. Kieffer (2008). Opt. Express 16, 11987.

    Article  CAS  PubMed  Google Scholar 

  28. I. Yu. Skobelev, A. Ya. Faenov, A. T. Magunov, et al. (2002). JETP 94, 73.

    Article  CAS  Google Scholar 

  29. T. Ditmire, R. A. Smith, R. S. Marjoribanks, G. Kulcsàr, and M. H. R. Hutchinson (1997). Appl. Phys. Lett. 71, 166. https://doi.org/10.1063/1.119491.

    Article  CAS  Google Scholar 

  30. T. Ditmire, T. Donnelly, R. W. Falcone, and M. D. Perry (1995). Phys. Rev. Lett. 75, 3122.

    Article  CAS  PubMed  Google Scholar 

  31. K. Moribayashi (2003). Nucl. Instrum. Meth. Phys. Res. B 205, 346. https://doi.org/10.1016/S0168-583X(02)01990-0

    Article  CAS  Google Scholar 

  32. R. C. Issac, G. Vieux, B. Ersfeld, E. Brunetti, S. P. Jamison, J. Gallacher, D. Clark, and D. A. Jaroszynski (2004). Phys. Plasmas 11, 3491. https://doi.org/10.1063/1.1755222

    Article  CAS  Google Scholar 

  33. S. Ter-Avetisyan, U. Vogt, H. Stiel, M. Schnürer, I. Will, and P. V. Nickles (2003). J. Appl. Phys. 94, 5489. https://doi.org/10.1063/1.1614862

    Article  CAS  Google Scholar 

  34. L. Ramunno, T. Brabec, V. Krainov, Intense Laser Interaction with Noble Gas Clusters, in Strong Field Physics, ed. by T. Brabec, (Springer Science & Business Media LLC, 2008). https://doi.org/10.1007/978-0-387-34755-4-1

    Chapter  Google Scholar 

  35. W. J. Blyth, S. G. Preston, A. A. Offenberger, M. H. Key, J. S. Wark, Z. Najmudin, A. Modena, A. Djaoui, and A. E. Dangor (1995). Phys. Rev. Lett. 74, 554.

    Article  CAS  PubMed  Google Scholar 

  36. K. A. Janulewicz, M. Grout, and G. J. Pert (1996). J. Phys. B: At. Mol. Opt. Phys. 29, 901.

    Article  CAS  Google Scholar 

  37. A. S. Boldarev, V. A. Gasilov, F. Blasco, C. Stenz, F. Dorchies, F. Salin, A. Ya. Faenov, T. A. Pikuz, A. I. Magunov, and I. Yu. Skobelev (2001). JETP Lett. 73, 514.

    Article  CAS  Google Scholar 

  38. A. S. Boldarev, V. A. Gasilov, and A. Ya. Faenov (2004). Techn. Phys. 49, 388.

    Article  CAS  Google Scholar 

  39. O. F. Hagena (1992). Rev. Sci. Instrum. 63, 2374. https://doi.org/10.1063/1.1142933.

    Article  CAS  Google Scholar 

  40. O. F. Hagena, and W. Obert (1972). J. Chem. Phys. 56, 1793.

    Article  CAS  Google Scholar 

  41. See e.g. https://omlc.org/software/mie/

  42. S. Jinno et al. (2013) Appl. Phys. Lett. 102, 164103. https://doi.org/10.1063/1.4802915

    Article  CAS  Google Scholar 

  43. Air Liquide online data base. http://encyclopedia.airliquide.com/encyclopedia.asp

  44. V. M. Smirnov (1994). Physics-Uspekhi 37, 621.

    Article  Google Scholar 

  45. A. Bartnik, W. Skrzeczanowski, H. Fiedorowicz, P. Wachulak, and T. Fok (2018). Laser Part. Beams 36, 76.

    Article  CAS  Google Scholar 

  46. See at http://pgopher.chm.bris.ac.uk

  47. F. Docchio, P. Regondi, and M. R. C. Capon (1988). J. Mellerio, Appl. Opt. 27, 3661.

    Article  CAS  PubMed  Google Scholar 

  48. H. M. Milchberg, S. J. McNaught, and E. Parra (2001). Phys. Rev. E 64, 056402.

    Article  CAS  Google Scholar 

Download references

Funding

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 871124 Laserlab-Europe. We acknowledge also internal MUT Grant UGB 23-782/2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karol Adam Janulewicz or Chul Min Kim.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest. All authors have contributed equally and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1369 kb)

Supplementary file2 (DIVX 690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wȩgrzyński, Ł., Fok, T., Szczurek, M. et al. An Abundance of Extremely Large Clusters as a Target for Intense Laser-Matter Interaction. J Clust Sci 34, 587–597 (2023). https://doi.org/10.1007/s10876-022-02250-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02250-5

Keywords

Navigation