Skip to main content
Log in

Probing the Structures, Stabilities and Electronic Properties of Neutral and Anionic PrSinλ (n = 1–9, λ = 0, − 1) Clusters: Comparison with Pure Silicon Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Silicon-based clusters have attracted particular attention because they are regard as building blocks for developing silicon-based nanomaterials. However, pure silicon clusters have low chemical stability owing to their dangling bonds. Doping with lanthanide atoms is a good way to form closed-shell of M@Sin clusters and alter their electronic and magnetic properties. Here, we systematically study the lanthanide element Pr doped neutral and anionic silicon clusters by using density functional theory. Extensive searches for ground-state structures of Sin+1λ and PrSinλ (n = 1–9, λ = 0, − 1) clusters were carried out based on the comparison between experimental photoelectron spectroscopy and simulated spectra. Furthermore, the calculated AEA values of our obtained structures show good agreement with the experimental values. Based on averaged binding energies, fragmentation energies and HOMO–LUMO gaps, their relative stabilities were analyzed. Furthermore, the patterns of HOMOs for the most stable isomers were investigated to gain insight into the nature of bonding. The results show that some σ-type and few π-type bonds are formed among Si and Pr atoms. To achieve a insight into localization of charge and charge-transfer information, the Mulliken population are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Tomioka, M. Yoshimura, and T. Fukui (2012). A III-V nanowire channel on silicon for high-performance vertical transistors. Nature. 488, 189–192.

    Article  CAS  PubMed  Google Scholar 

  2. B. Roche, R.-P. Riwar, B. Voisin, E. Dupont-Ferrier, R. Wacquez, M. Vinet, M. Sanquer, J. Splettstoesser, and X. Jehl (2013). A two-atom electron pump. Nat. Commun. 4, 1581.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Chen, Y. Liu, S. Li, and J. Yang (2019). Theoretical study on the growth behavior and photoelectron spectroscopy of lanthanum-doped silicon clusters LaSin0/−(n = 6–20). J. Clust. Sci. 30, 789–796.

    Article  CAS  Google Scholar 

  4. Y. Feng, J. Yang, and Y. Liu (2016). Study on the structures and properties of praseodymium-doped silicon clusters PrSin (n=3-9) and their anions with density functional schemes. Theor. Chem. Acc. 135, 258.

    Article  Google Scholar 

  5. T. M. Fu, X. J. Duan, Z. Jiang, X. C. Dai, P. Xie, Z. G. Cheng, and C. M. Lieber (2014). Sub-10-nm intracellular bioelectronic probes from nanowire–nanotube heterostructures. Proc. Natl. Acad. Sci. USA 111, 1259–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. K. Koyasu, J. Atobe, S. Furuse, and A. Nakajima (2008). Anion photoelectron spectroscopy of transition metal- and lanthanide metal-silicon clusters: MSin (n = 6–20). J. Chem. Phys. 129, 214301.

    Article  PubMed  Google Scholar 

  7. A. Grubisic, H. P. Wang, Y. J. Ko, and K. H. Bowen (2008). Photoelectron spectroscopy of europium-silicon clusters anions, EuSin (3 ≤ n ≤ 17). J. Chem. Phys. 129, 054302.

    Article  PubMed  Google Scholar 

  8. C. G. Li, J. H. Gao, J. Zhang, W. T. Song, S. Q. Liu, S. Z. Gao, B. Z. Ren, and Y. F. Hu (2018). Structures, stabilities and electronic properties of boron-doped silicon clusters B3Sin (n=1–17) and their anions. Mol. Phys. 117, 1–13.

    Google Scholar 

  9. Y. Zhang, J. Yang, and L. Cheng (2018). Probing structure, thermochemistry, electron affinity and magnetic moment of erbium-doped silicon clusters ErSin (n = 3–10) and their anions with density functional theory. J. Clust. Sci. 29, 301–311.

    Article  CAS  Google Scholar 

  10. T. D. Hang, H. M. Hung, and M. T. Nguyen (2016). Structural assignment, and electronic and magnetic properties of lanthanide metal doped silicon heptamers Si7M0/−with M = Pr, Gd and Ho. Phys. Chem. Chem. Phys. 18, 31054.

    Article  CAS  PubMed  Google Scholar 

  11. X. J. Li, Z. J. Yan, and S. N. Li (2016). The nature of structure and bonding between transition metal and mixed Si-Ge tetramers: a 20-electron superatom system. J. Comput. Chem. 37, 2316–2323.

    Article  CAS  PubMed  Google Scholar 

  12. I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W. M. Siu, and K. A. Jackson (2000). Single-parent evolution algorithm and the optimization of Si clusters. Phys. Rev. Lett. 85, 546–549.

    Article  CAS  PubMed  Google Scholar 

  13. V. T. Ngan, P. Gruene, P. Claes, E. Janssens, A. Fielicke, M. T. Nguyen, and P. Lievens (2010). Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined far-infrared spectroscopic and computational study. J. Am. Chem. Soc. 132, 15589–15602.

    Article  CAS  Google Scholar 

  14. V. T. Ngan, E. Janssens, P. Claes, J. T. Lyon, A. Fielicke, M. T. Nguyen, and P. Lievens (2012). High magnetic moments in manganese-doped silicon clusters. Chem. Eur. J. 18, 15788–15793.

    Article  CAS  PubMed  Google Scholar 

  15. V. T. Ngan, K. Pierloot, and M. T. Nguyen (2013). Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster. Phys. Chem. Chem. Phys. 15, 5493–5498.

    Article  CAS  PubMed  Google Scholar 

  16. P. Claes, V. T. Ngan, M. Haertelt, J. T. Lyon, A. Fielicke, M. T. Nguyen, P. Lievens, and E. Janssens (2013). The structures of neutral transition metal doped silicon clusters, SinX (n = 6–9; X = V, Mn). J. Chem. Phys. 138, 194301.

    Article  PubMed  Google Scholar 

  17. J. T. Lau, K. Hirsch, P. Klar, A. Langenberg, F. Lofink, R. Richter, J. Rittmann, M. Vogel, V. Zamudio-Bayer, T. Möller, and B. V. Issendorff (2009). X-ray spectroscopy reveals high symmetry and electronic shell structure of transition-metal-doped silicon clusters. Phys. Rev. A. 79, 053201.

    Article  Google Scholar 

  18. X. Y. Kong, H. G. Xu, and W. Zheng (2012). Structures and magnetic properties of CrSin (n= 3–12) clusters: photoelectron spectroscopy and density functional calculations. J. Chem. Phys. 137, 4307.

    Article  Google Scholar 

  19. P. Shao, X. Y. Kuang, L. P. Ding, M. M. Zhong, and Z. H. Wang (2012). Density-functional theory study of structures, stabilities, and electronic properties of the Cu2-doped silicon clusters: comparison with pure silicon clusters. Phys. B. 407, 4379–4386.

    Article  CAS  Google Scholar 

  20. W. Zheng, J. M. Nilles, D. Radisic, and K. H. Bowen (2005). Photoelectron spectroscopy of chromium-doped silicon cluster anions. J. Chem. Phys. 122, 071101.

    Article  PubMed  Google Scholar 

  21. S. N. Khanna, B. K. Rao, and P. Jena (2002). Magic numbers in metallo-inorganic clusters: chromium encapsulated in silicon cages. Phys. Rev. Lett. 89, 016803.

    Article  CAS  PubMed  Google Scholar 

  22. P. Shao, L. P. Ding, D.-B. Luo, and C. Lu (2019). Probing the structures, electronic and bonding properties of multidecker lanthanides: Neutral and anionic Lnn(COT)m (Ln = Ce, Nd, Eu, Ho and Yb; n, m = 1, 2) complexes. J. Mol. Graph. Model. 90, 226–234.

    Article  CAS  PubMed  Google Scholar 

  23. W. G. Sun, X. Y. Kuang, H. D. J. Keen, C. Lu, and A. Hermann (2020). Second group of high-pressure high-temperature lanthanide polyhydride superconductors. Phys. Rev. B 102, 144524.

    Article  CAS  Google Scholar 

  24. M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya (2007). Geometric and electronic structures of terbium-silicon mixed clusters (TbSin; 6 ≤ n ≤ 16). J. Phys. Chem. A. 111, 10884.

    Article  CAS  Google Scholar 

  25. V. Kumar, A. K. Singh, and Y. Kawazoe (2006). Charged and magnetic fullerenes of silicon by metal encapsulation: predictions from ab initio calculations. Phys. Rev. B. 74, 125411.

    Article  Google Scholar 

  26. A. Grubisic, Y. J. Ko, H. Wang, and K. H. Bowen (2009). Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSin (3 ≤ n ≤ 13; Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters. J. Am. Chem. Soc. 131, 10783–10790.

    Article  CAS  PubMed  Google Scholar 

  27. C. G. Li, L. J. Pan, P. Shao, L. P. Ding, H. T. Feng, D. B. Luo, and B. Liu (2015). Structures, stabilities, and electronic properties of the neutral and anionic SinSmλ (n = 1–9, λ = 0, -1) clusters: comparison with pure silicon clusters. Theor. Chem. Acc. 134, 1–11.

    Article  Google Scholar 

  28. C. Lu, W. G. Gong, Q. Li, and C. F. Chen (2020). Elucidating stress-strain relations of ZrB12 from first-principles studies. J. Phys. Chem. Lett. 11, 9165–9170.

    Article  CAS  PubMed  Google Scholar 

  29. B. L. Chen, L. J. Conway, W. G. Sun, X. Y. Kuang, C. Lu, and A. Hermann (2021). Phase stability and superconductivity of lead hydrides at high pressure. Phys. Rev. B. 103, 035131.

    Article  CAS  Google Scholar 

  30. C. Lu and C. F. Chen (2021). Indentation strengths of zirconium diboride: intrinsic versus extrinsic mechanisms. J. Phys. Chem. Lett. 12, 2848–2853.

    Article  CAS  PubMed  Google Scholar 

  31. M.J. Frisch, et al. (2009). Gaussian 09 (Revision C.01), Gaussian, Inc., Wallingford

  32. A. D. Becke (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  33. J. P. Perdew and Y. Wang (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B: Condens. Matter. 45, 13244–13249.

    Article  CAS  Google Scholar 

  34. C. Lee, W. Yang, and R. G. Parr (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789.

    Article  CAS  Google Scholar 

  35. G. D. Purvis and R. J. Bartlett (1982). A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 76, 1910–1918.

    Article  CAS  Google Scholar 

  36. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer (1988). An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 89, 7382–7387.

    Article  CAS  Google Scholar 

  37. G. E. Scuseria and H. F. Schaefer (1989). An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J. Chem. Phys. 90, 3700–3703.

    Article  CAS  Google Scholar 

  38. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654.

    Article  CAS  Google Scholar 

  39. M. Dolg, H. Stoll, A. Savin, and H. Preuss (1989). Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta. 75, 173–194.

    Article  CAS  Google Scholar 

  40. M. Dolg, H. Stoll, and H. Preuss (1989). Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys. 90, 1730–1734.

    Article  CAS  Google Scholar 

  41. J. C. Yang, W. G. Xu, and W. S. Xiao (2005). The small silicon clusters Sin (n = 2–10) and their anions: structures, themochemistry, and electron affinities. J. Mol. Struct. Theochem. 719, 89–102.

    Article  CAS  Google Scholar 

  42. C. Pouchan, D. Bégué, and D. Y. Zhang (2004). Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Sin (n = 3–10). J. Chem. Phys. 121, 4628–4634.

    Article  CAS  PubMed  Google Scholar 

  43. K. Jackson, M. R. Pederson, D. Porezag, Z. Hajnal, and T. Frauenheim (1997). Density- functional-based predictions of Raman and IR spectra for small Si clusters. Phys. Rev. B. 55, 2549–2555.

    Article  CAS  Google Scholar 

  44. N. Binggeli and J. R. Chelikowsky (1995). Photoemission spectra and structures of Si clusters at finite temperature. Phys. Rev. Lett. 75, 493–496.

    Article  CAS  PubMed  Google Scholar 

  45. O. Kostko, S. R. Leone, M. A. Duncan, and M. Ahmed (2010). Determination of ionization energies of small silicon clusters with vacuum ultraviolet radiation. J. Phys. Chem. A. 114, 3176–3181.

    Article  CAS  PubMed  Google Scholar 

  46. G. F. Zhao, J. M. Sun, Y. Z. Gu, and Y. X. Wang (2009). Density-functional study of structural, electronic, and magnetic properties of the EuSin (n = 1–13) clusters. J. Chem. Phys. 131, 114–312.

    Article  Google Scholar 

  47. T. G. Liu, G. F. Zhao, and Y. X. Wang (2011). Structural, electronic and magnetic properties of GdSin (n = 1–17) clusters: a density functional study. Phys. Lett. A. 375, 1120–1127.

    Article  CAS  Google Scholar 

  48. M. R. Nimlos, B. L. Harding, and G. B. Ellison (1987). The electronic states of Si2 and Si2 as revealed by photoelectron spectroscopy. J. Chem. Phys. 87, 5116.

    Article  CAS  Google Scholar 

  49. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules, vol. IV (Van Nostrand Reinhold, New York, 1979).

    Book  Google Scholar 

  50. Y. R. Zhao, Y. Q. Xu, P. Chen, Y. Q. Yuan, Y. Qian, and Q. Li (2021). Structural and electronic properties of medium-sized beryllium doped magnesium BeMgn clusters and their anions. Results Phys. 26, 104341.

    Article  Google Scholar 

  51. T. Lu and F. W. Chen (2012). Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592.

    Article  PubMed  Google Scholar 

  52. T. Lu and F. W. Chen (2011). Calculation of molecular orbital composition. Acta. Chim. Sin. 69, 2393–2406.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11804212), Youth Talent Invitation Scheme of Shaanxi Association for science and technology (Nos. 20180506 and 20190506) and the Shaanxi University of Science & Technology Key Research Grant (Nos. 2016BJ-01 and BJ15-07 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, P., Zhao, ZL., Zhang, H. et al. Probing the Structures, Stabilities and Electronic Properties of Neutral and Anionic PrSinλ (n = 1–9, λ = 0, − 1) Clusters: Comparison with Pure Silicon Clusters. J Clust Sci 33, 2723–2733 (2022). https://doi.org/10.1007/s10876-021-02188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02188-0

Keywords

Navigation