Skip to main content

Advertisement

Log in

Green Synthesis of Reduced Graphene oxide Nanosheets Using Leaf Extract of Lantana camara and Its In-Vitro Biological Activities

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent years, sustainable green chemistry sets eco-efficiency approaches to synthesis next generation nanomaterials using plant sources as reducing agents. Among them, reduced Graphene oxide (rGO) has been developing as biocompatible nanomaterials in biomedicine. The present work deals with facile synthesis of rGO using leaf extract of Lantana camara (LC). The bioreduction of graphene oxide (GO) to reduced Graphene oxide by L. camara (LCrGO) was confirmed by spectroscopic techniques such as UV–visible, XRD, FTIR, Raman spectrometer, Zeta potential and DLS. SEM and TEM microscopic revealed the presence of thin nano sheets of LCrGO. EDX detected intense signals of Carbon (86%) and Oxygen (13%) present in LCrGO. The bioreduced LCrGO showed potential in vitro biological effects. DPPH assay showed 79% radical inhibition at 500 µg/ml. The LCrGO exhibited enhanced bactericidal effects against B. subtilis (16 mm) and E. coli (12 mm) at 500 µg/ml. MTT assay showed concentration dependent cytotoxic effects against lung cancer cell lines (A549) with decrease in cell viability (44%) at maximum concentration of LCrGO (500 µg/ml). From the observations, it is concluded that rGO nanosheets synthesized using L. camara could be used for formulation of nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. K. Gupta, R. S. Rajaura, and K. Sharma (2015). Int. J. Environ. Sci. Technol. 1, 16–24.

    Google Scholar 

  2. J. C. Pieretti, W. R. Rolim, F. F. Ferreira, C. B. Lombello, and A. B. Seabra (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01670-0.

    Article  Google Scholar 

  3. R. Mahendran, D. Sridharan, K. Santhakumar, T. A. Selvakumar, P. Rajasekar, and J. Jang (2016). Indian J. Mater. Sci. 1–10.

  4. T. Y. Suman, S. R. Radhika Rajasree, R. Ramkumar, C. Rajthilak, and P. Perumal (2014). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 11–16.

    CAS  Google Scholar 

  5. A. Cadete, A. Olivera, M. Besev, P. K. Dhal, L. Gonçalves, A. J. Almeida, G. Bastiat, J. P. Benoit, M. D. L. Fuente, M. G. Fuentes, and D. Torres (2019). Sci. Rep. 9, (11555–11566), 2019.

    Google Scholar 

  6. G. Prabhavathi, A. Mariam, and M. Karunanithy (2019). Int. J. Bio-Pharma Res. 8, 2486–2490.

    Google Scholar 

  7. A. N. A. Khatua, E. Priyadarshini, P. Rajamani, A. Patel, J. Kumar, M. R. S. Muthupandian, H. Barabadi, A. Prasad, L. Ghosh, and B. Paul (2019). J. Clust. Sci.. https://doi.org/10.1007/s10876-019-01624-6.

    Article  Google Scholar 

  8. S. O. Ogunyemi, Y. Abdallah, M. Zhang, H. Fouad, X. Hong, E. Ibrahim, Md M I Masum, A. Hossain, J. Mo, and B. Li (2019). Artif. Cells Nanomed. Biotechnol. 47, 341–352.

    CAS  PubMed  Google Scholar 

  9. L. Feng and Z. Liu (2011). Graphene in biomedicine: opportunities and challenges. Nanomedicine 6, (2), 317–324.

    CAS  PubMed  Google Scholar 

  10. A. P. Nikam, M. P. Ratnaparkhiand, and P. C. Shilpa (2014). J. Drug Deliv. Ther. 3, 1121–1127.

    CAS  Google Scholar 

  11. M. Shah, D. Fawcett, S. Sharma, and S. K. Tripathy (2015) Green Synthesis of Metallic Nanoparticles via Biological Entities.

  12. P. Chamoli, R. Sharma, M. K. Das, and K. K. Kar (2016). RSC Adv. 6, 96355–96366.

    CAS  Google Scholar 

  13. S. Maria Coro, P. Florina, M. Lidia, C. Socaci, and S. Pruneanu (2019). Mater. Sci.. https://doi.org/10.1007/s11706-019-0452-5.

    Article  Google Scholar 

  14. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra (2018). J. Nano struct Chem. 8, 123–137.

    CAS  Google Scholar 

  15. G. Lee and B. S. Kim (2014). Biotechnol. Prog. 30, 463–469.

    CAS  PubMed  Google Scholar 

  16. J. Wen, B. K. Salunke, and B. S. Kim (2017). J. Chem. Technol. Biotechnol. 92, 1428–1435.

    CAS  Google Scholar 

  17. B. Chandu, V. S. S. Mosali, B. Mullamuri, and H. B. Bollikolla (2017). Carbon Lett. 21, 74–80.

    Google Scholar 

  18. C. Li, Z. Zhuang, X. Jin, and Z. Chen (2017). Appl. Surf. Sci. 422, 469–474.

    CAS  Google Scholar 

  19. X. Zhu, X. Xu, F. Liu, J. Jin, L. Liu, Y. Zhi, Z. W. Chen, Z. S. Zhou, and J. Yu (2017). Nanomater. Nanotechnol. 7, 1–7.

    Google Scholar 

  20. Y. Wang, Z. X. Shi, and J. Yin (2011). ACS Appl. Mater. Interfaces. 3, 1127–1133.

    CAS  PubMed  Google Scholar 

  21. C. K. Chua and M. Pumera (2014). Chem Soc Rev. 43, 291–312.

    CAS  PubMed  Google Scholar 

  22. G. Bhattacharya, S. Sas, S. Wadhwa, A. Mathur, J. Mclaughlin, and S. S. Roy (2017). RSC Adv. 7, 26680–26688.

    CAS  Google Scholar 

  23. S. Babu, B. Kumar, R. Vankayala, and P. Kalluru (2015). Spectrochim. Act. Part A Mol. Biomol. Spectrosc. 145, 117–124.

    Google Scholar 

  24. C. Singh, A. Ali, and G. Sumana (2016). ACS Sustain. Chem. Eng. 4, 1–34.

    CAS  Google Scholar 

  25. G. Amala, J. Saravanan, D. J. Yoo, A. R. Kimc, and G. G. Kumar (2017). New J. Chem. https://doi.org/10.1039/x0xx00000x.

    Article  Google Scholar 

  26. C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, and K. Ranganathan (1996). Bioresour. Technol. 57, 37–43.

    Google Scholar 

  27. S. B. Maddinedi and B. K. Mandal (2016). Curr. Nanosci. 12, 94–102.

    CAS  Google Scholar 

  28. F. Tavakoli, M. Salavati-niasari, and F. Mohandes (2015). Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. 63, 51–57.

    CAS  Google Scholar 

  29. R. K. Upadhyay, N. Soin, S. Saha, A. Barman, and S. S. Roy (2015). Mater. Lett. 160, 355–358.

    CAS  Google Scholar 

  30. T. Kuila, S. Bose, P. Khanra, and A. Kumar (2012). Carbon. 50, 914–921.

    CAS  Google Scholar 

  31. C. Karthikeyan, K. Ramachandran, S. Sheet, D. J. Yoo, Y. S. Lee, Y. S. Kumar, A. R. Kim, and G. G. Kumar (2017). ACS Sustain. Chem. Eng. 5, 4897–4905.

    CAS  Google Scholar 

  32. F. Lorestani, Z. Shahnavaz, P. Mn, Y. Alias, and N. S. A. Manan (2015). Sens. Actuat. B Chem. 208, 389–398.

    CAS  Google Scholar 

  33. M. Vinothkannan, C. Karthikeyan, G. Gnana Kumar, A. R. Kim, and D. J. Yoo (2015). Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 136, 256–264.

    CAS  Google Scholar 

  34. K. V. B. R. Sanjeeb Kalita, G. Kumar, and L. Karthik (2012). Adv. Pharmacol. Sci. 5, (711–715), 2012.

    Google Scholar 

  35. Khare CP, Springer, (2007). https://www.springer.com/gp/book/9780387706375.

  36. K. K. R. Kirtikar, B. D. Basu, and I. C. S Kirtikar (1975). Ranchoddas, 1849–1917.

  37. W. S. Jr. Hummers and R. E. Offema (1957). Am. Chem. Soc. 80, 1339.

    Google Scholar 

  38. B. Paulchamy, G. Arthi, and L. Bd (2015). Nanomed. Nanotechnol. 6, 1–4.

    Google Scholar 

  39. B. Adhikari, S. K. Dhungana, M. Waqas Ali, A. Adhikari, I. D. Kim, and D. H. Shin (2019). J. Saudi Soc. Agric. Sci. 18, 437–442.

    Google Scholar 

  40. S. K. Bopp and T. Lettieri (2008). BMC Pharmacol. 8, 1–11.

    Google Scholar 

  41. K. Krishnamoorthy, R. Mohan, and S. J. Kim (2011). Appl. Phys. Lett. 98, 244101.

    Google Scholar 

  42. R. Naz and A. Bano (2013). Asian Pac. J. Trop. Dis. 3, 480–486.

    CAS  PubMed Central  Google Scholar 

  43. S. N. Alam, N. Sharma, and L. Kumar (2017). Graphene 6, 1–18.

    CAS  Google Scholar 

  44. A. A. Moosa, and J. N. Jaafar (2017). 7, 38–47.

  45. P. M. J. Firdhouse and Lalitha (2014). Int. Nano Lett. 4, 103–108.

    CAS  Google Scholar 

  46. S. Mahata, A. Sahu, P. Shukla, A. Rai, M. Singh, and V. K. Rai (2018). New J. Chem. 42, 19945–19952.

    CAS  Google Scholar 

  47. M. Fathy, R. H. Mohamed, and K. Amany (2019). Graphene Technol. 4, 33–40.

    Google Scholar 

  48. E. B. L. A. Noel, J. Faucheu, J. M. Chenal, and J. P. Viricelle (2014). Polymer. 55, 5140–5145.

    CAS  Google Scholar 

  49. N. M. S. Hidayah, W. W. Liu, C. W. Lai, N. Z. Noriman, C. S. Khe, U. Hashim, and H. C. Lee (2017). AIP Conf. Proc. 1892, 150002.

    Google Scholar 

  50. A. C. Ferrari (2007). Solid State Commun. 143, 47–57.

    CAS  Google Scholar 

  51. M. Abdolahad, M. Janmaleki, S. Mohajerzadeh, O. Akhavan, and S. Abbasi (2013). Mater. Sci. Eng. 33, 1498–1505.

    CAS  Google Scholar 

  52. A. Ani, A. Lina, W. A. Yehye, F. A. Kadir, N. M. Hashim, M. A. Alsaadi, N. M. Julkapli, and V. K. S. Hsiao (2019). Plos ONE 50, 1–24.

    Google Scholar 

  53. S. Yaragalla, R. Rajendran, J. Jose, M. A. Almaadeed, N. Kalarikkal, and S. Thomas (2016). Mater. Sci. Eng. 65, 345–353.

    CAS  Google Scholar 

  54. N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. Liu, and C. H. Voon (2017). Procedia Eng. 184, 469–477.

    CAS  Google Scholar 

  55. K. Muthoosamy, R. G. Bai, I. B. Abubakar, S. M. Sudheer, H. N. Lim, H. S. Loh, N. M. Huang, C. H. Chi, and S. Manickam (2015). Int. J. Nanomed. 10, 1505–1519.

    CAS  Google Scholar 

  56. W. Zhang, W. He, and X. Jing (2010). J. Phys. Chem. 114, 10368–10373.

    CAS  Google Scholar 

  57. D. Suresh, H. Nagabhushana, and S. C. Sharma (2014). Mater. Lett. 10–12.

  58. F. D. J. Qiu, L. Chen, Q. Zhu, D. Wang, W. Wang, X. Sun, and X. Liu (2012). Food Chem. 135, 2366–2371.

    CAS  PubMed  Google Scholar 

  59. D. Bhakta and D. Ganjewala (2009). J. Sci. Res. 1, 363–369.

    CAS  Google Scholar 

  60. M. K. Swamy, U. R. Sinniah, and M. S. Akhtar (2015). Evid. Based Complement. Altern. Med. 9, 1–10.

    Google Scholar 

  61. S. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, and R. Jiang (2011). ACS Nano 5, (9), 6971–6980.

    CAS  PubMed  Google Scholar 

  62. H. N. Lim, N. M. Huang, and C. H. Loo (2012). J. Non. Cryst. Solids. 358, 525–530.

    CAS  Google Scholar 

  63. P. N. Khanam and A. Hasan (2019). Int. J. Biol. Macromol. 126, 151–158.

    Google Scholar 

  64. L. Zhang, J. Xia, Q. Zhao, L. Liu, and Z. Zhang (2010). Small. 6, 537–544.

    CAS  PubMed  Google Scholar 

  65. E. O. Sousa, C. M. B. A. Miranda, C. B. Nobre, A. A. Boligon, M. L. Athayde, and J. G. M. Costa (2015). Ind. Crops Prod. 70, 7–15.

    CAS  Google Scholar 

  66. K. Lingaraju, H. Raja Naika, G. Nagaraju, and H. Nagabhushana (2019). Biotechnol. Rep. 24, 00376.

    Google Scholar 

  67. Y. Chang, S. T. Yang, J. H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, and H. Wang (2011). Toxicol. Lett. 200, 201–210.

    CAS  PubMed  Google Scholar 

  68. J. Chen, H. Liu, C. Zhao, G. Qin, G. Xi, T. Li, X. Wang, and T. Chen (2014). Biomaterials 35, 4986–4995.

    CAS  PubMed  Google Scholar 

  69. V. Nandakumar, T. Singh, and S. K. Katiyar (2008). Cancer Lett. 269, 378–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. S. B. Mahato, N. P. Sahu, S. K. Roy, and O. P. Sharma (1994). Tetrahedron 50, 9439–9446.

    CAS  Google Scholar 

  71. J. Kaur, M. Sharma, P. D. Sharma, and M. P. Bansal (2010). Am. J. Biomed. Sci. 2, 79–90.

    CAS  Google Scholar 

  72. Y. Ma, H. Shen, X. Tu, and Z. Zhang (2014). Nanomedicine. 9, 1565–1580.

    CAS  PubMed  Google Scholar 

  73. J. L. Wilding and W. F. Bodmer (2014). Cancer Res. 74, 2377–2384.

    CAS  PubMed  Google Scholar 

  74. T. A. Tabish, A. Tanveer, M. Z. I. Pranjol, H. Hayat, A. A. M. Rahat, T. M. Abdullah, J. L. Whatmore, and S. Zhang (2017). Nanotechnology 28, 1–16.

    Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to Dr. K. Sathiyanarayanan, Professor and Dr. A. Thanigaivelan, National Post-Doctoral Researcher at Department of Chemistry, Vellore Institute of Technology (VIT), Vellore-632014 for their support to carry out this research work. The author also conveys special thanks to Mr. Anooj ES, Director & Research Consultant, Xcellogen Biotech Pvt Ltd., Nagercoil, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivakumar Arumugam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiyagarajulu, N., Arumugam, S. Green Synthesis of Reduced Graphene oxide Nanosheets Using Leaf Extract of Lantana camara and Its In-Vitro Biological Activities. J Clust Sci 32, 559–568 (2021). https://doi.org/10.1007/s10876-020-01814-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01814-7

Keywords

Navigation