Skip to main content
Log in

P. domestica Extract Mediated Silver Nanoparticles and their Antinociceptive Activity for Pain Management in Children

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

A Correction to this article was published on 06 May 2020

This article has been updated

Abstract

Because of the environmentally-friendly design and low cost, bio-mediated synthesis of nanoparticles has become popular in recent years. In this research, we utilized an aqueous extract of Prunus domestica (P. domestica) to produce silver nanoparticles (AgNPs). Different spectroscopic and microscopic studies have performed to characterize the as-produced AgNPs. The X-ray diffraction (XRD) findings showed the formation of crystalline face-centered cubic (fcc) NPs. Furthermore, the analysis of Fourier transform infrared (FT-IR) spectroscopy verified that the P. domestica leaf extract not only worked as a bioreducing agent and also capped the AgNP surface by serving as a stabilizing agent. The prepared AgNPs were tested for their antinociceptive (abdominal constriction response) activities. It was revealed that AgNPs suggestively reduced the chemically-persuaded nociception, which was equivalent to the effect of P. domestica extract. Further, these results conclude the use of P. domestica extract mediated AgNPs as antinociceptive agent for pain management in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 06 May 2020

    The authors would like to add the first author as the co-corresponding author to the originally published article.

References

  1. B. Moldovan, L. David, M. Achim, S. Clichici, and G. A. Filip (2016). J. Mol. Liquids. 221, 271–278.

    Article  CAS  Google Scholar 

  2. R. Sriranjani, B. Srinithya, V. Vellingiri, P. Brindha, S. P. Anthony, A. Sivasubramanian, and M. S. Muthuraman (2016). J. Mol. Liquids. 220, 926–930.

    Article  CAS  Google Scholar 

  3. P. Orlowski, M. Zmigrodzka, E. Tomaszewska, K. Ranoszek-Soliwoda, M. Czupryn, M. Antos-Bielska, J. Szemraj, G. Celichowski, J. Grobelny, and M. Krzyzowska (2018). Int. J. Nanomed. 13, 991.

    Article  CAS  Google Scholar 

  4. K. Ranoszek-Soliwoda, E. Tomaszewska, K. Małek, G. Celichowski, P. Orlowski, M. Krzyzowska, and J. Grobelny (2019). Coll. Surf. B Biointerf. 117, 19–24.

    Article  Google Scholar 

  5. M. J. Ahmed, G. Murtaza, A. Mehmood, and T. M. Bhatti (2015). Mater. Lett. 153, 10–13.

    Article  CAS  Google Scholar 

  6. N. Ahmad, S. Bhatnagar, S. S. Ali, and R. Dutta (2015). Int. J. Nanomed. 10, 7019.

    CAS  Google Scholar 

  7. N. Shobha, N. Nanda, A. S. Giresha, P. Manjappa, K. Dharmappa, and B. Nagabhushana (2018). Mater. Sci. Eng. C. 97, 842–850.

    Article  Google Scholar 

  8. H. Collier, L. Dinneen, C. A. Johnson, and C. Schneider (1968). Br J Pharmacol Chemother. 32, (2), 295–310.

    Article  CAS  Google Scholar 

  9. P. Velusamy, J. Das, R. Pachaiappan, B. Vaseeharan, and K. Pandian (2015). Ind. Crops Prod. 66, 103–109.

    Article  CAS  Google Scholar 

  10. N. L. Gavade, A. N. Kadam, M. B. Suwarnkar, V. P. Ghodake, and K. M. Garadkar (2015). Spectrochim. Acta, Part A 136, 953–960.

    Article  CAS  Google Scholar 

  11. K. Rajaram, D. C. Aiswarya, and P. Sureshkumar (2015). Mater. Lett. 138, 251–254.

    Article  CAS  Google Scholar 

  12. M. Nasrollahzadeh, S. M. Sajadi, and Y. Mirzaei (2016). J. Colloid Interface Sci. 468, 156–162.

    Article  CAS  Google Scholar 

  13. V. K. Vidhu and D. Philip (2014). Spectrochim. Acta, Part A 117, 102–108.

    Article  CAS  Google Scholar 

  14. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496–502.

    Article  CAS  Google Scholar 

  15. G. Rajakumar and A. Abdul Rahuman (2012). Res. Vet. Sci. 93, 303–309.

    Article  CAS  Google Scholar 

  16. H. Merskey, and N. Bogduk. 2nd ed. pp 210–3, (IASP Press, Seattle, 1994).

  17. M. J. Millan (1999). Prog. Neurobiol. 57, 1–164.

    Article  CAS  Google Scholar 

  18. S. P. Gawade (2012). J Pharmacol Pharmacother. 3, 348.

    Article  Google Scholar 

  19. G. Bentley, S. Newton, and J. Starr (1981). Br J Pharmacol. 73, 325–332.

    Article  CAS  Google Scholar 

  20. G. Bentley, S. Newton, and J. Starr (1983). Br J Pharmacol. 79, 125–134.

    Article  CAS  Google Scholar 

  21. Gray, P. Spencer, and R. D. E. Sewell (1998). Br. J. Pharmacol. 124, 669–674.

    Article  CAS  Google Scholar 

  22. A. M. Gray, D. M. Pache, and R. D. Sewell (1999). Eur. J. Pharmacol. 378, 161–168.

    Article  CAS  Google Scholar 

  23. M. Sprintz, C. Benedetti, and M. Ferrari (2004). Minerva Anestesiol. 71, (7–8), 419–423.

    Google Scholar 

  24. S. B. Maddinedi, J. Sonamuthu, S. S. Yildiz, G. Han, Y. Cai, J. Gao, Q. Ni, and J. Yao (2018). J Photochem. Photobiol. B 186, 189–196.

    Article  CAS  Google Scholar 

  25. S. B. Maddinedi (2017). Environ. Toxicol. Pharm. 53, 29–33.

    Article  CAS  Google Scholar 

  26. S. B. Maddinedi, B. K. Mandal, and K. Kumar (2017). Environ. Toxicol. Pharm. 51, 23–29.

    Article  CAS  Google Scholar 

  27. S. B. Maddinedi, B. K. Mandal, and S. K. Maddili (2017). J Photochem. Photobiol. B 167, 236–241.

    Article  CAS  Google Scholar 

  28. S. B. Maddinedi, B. K. Mandal, and K. Kumar (2017). Environ. Toxicol. Pharm. 49, 131–136.

    Article  CAS  Google Scholar 

  29. N. U. Islam, I. Khan, A. Rauf, N. Muhammad, M. Shahid, and M. R. Shah (2015). BMC Complement. Altern. Med. 15, 160.

    Article  Google Scholar 

  30. N. U. Islam, K. Jalil, M. Shahid, A. Rauf, N. Muhammad, A. Khan, M. R. Shah, and M. A. Khan (2019). Arab. J. Chem. 12, 1–12.

    Article  Google Scholar 

  31. N. U. Islam, K. Jalil, M. Shahid, N. Muhammad, and A. Rauf (2019). Arab. J. Chem. 12, 1–10.

    Article  Google Scholar 

  32. M. Sprintz, E. Tasciotti, M. Allegri, A. Grattoni, L. C. Driver, and M. Ferrari (2011). Eur. J. Pain Suppl. 5, (S2), 317–322.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongde Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, Z. & Yan, H. P. domestica Extract Mediated Silver Nanoparticles and their Antinociceptive Activity for Pain Management in Children. J Clust Sci 32, 85–90 (2021). https://doi.org/10.1007/s10876-020-01764-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01764-0

Keywords

Navigation