Skip to main content
Log in

Neodymium–Dysprosium and Neodymium–Ytterbium Iodide–Sulfide–Nitride Clusters: Synthesis and Luminescence

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Heterolanthanide clusters Nd2LnI5(S3)(S2N2)(THF)9 (Ln = Dy, Yb) are synthesized by the reactions of (NdI)3N2 with DyI3 or YbI3 and sulfur in a THF solution. X-ray diffraction analysis revealed that the structure of the complexes is similar to the structure of Nd2LnI5(S3)(S2N2)(THF) 9 obtained earlier (Ln = Tb, Tm). The ion Dy3 + in the molecule is coordinated by the iodine atom, the S2 group and the terminal N atom in the resulting S3N2 ligand. Cluster Nd2YbI5(S3)(S2N2)(THF)9 of the same structure was obtained as well when YbI2 was used instead of YbI3. Possible pathways of the reactions are discussed. UV excitation of Nd2DyI5(S3)(S2N2)(THF)9 causes low-intensity emission of Dy3+ ions: two bands at 480 and 580 nm. Magnetic measurements showed no exchange interaction in the obtained clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Z. Zhang, L. Zhang, Y. Li, L. Hong, Z. Chen, and X. Zhou (2010). Inorg. Chem. 49, 5715.

    Article  CAS  Google Scholar 

  2. W. Boncher, H. Dalafu, N. Rosa, and S. Stoll (2015). Coord. Chem. Rev. 289–290, 279.

    Article  Google Scholar 

  3. C. J. Müller, U. Schwarz, and T. Doert (2012). Z. Anorg. Allg. Chem. 638, 1.

    Article  Google Scholar 

  4. M. Fitzgerald, T. J. Emge, and J. G. Brennan (2002). Inorg. Chem. 41, 3528.

    Article  CAS  Google Scholar 

  5. C. Schoo, S. Bestgen, R. Köppe, S. N. Konchenko, and P. W. Roesky (2018). Chem. Commun. 54, 4770.

    Article  CAS  Google Scholar 

  6. Y.-Z. Ma, S. Bestgen, M. T. Gamer, S. N. Konchenko, and P. W. Roesky (2017). Angew. Chem. Int. Ed. 56, 13249.

    Article  CAS  Google Scholar 

  7. E. Rogers, P. Dorenbos, and E. van der Kolk (2011). New J. Phys. 13, 093038.

    Article  Google Scholar 

  8. F. Lissner and T. Schleid (1994). Z. Anorg. Allg. Chem. 620, 1998.

    Article  CAS  Google Scholar 

  9. F. Lissner, M. Meyer, and T. Schleid (1996). Z. Anorg. Allg. Chem. 622, 275.

    Article  CAS  Google Scholar 

  10. T. Schleid and F. Lissner (2008). J. Alloys Compds. 451, 610.

    Article  CAS  Google Scholar 

  11. R. Mueller-Mach, G. Mueller, M. R. Krames, H. A. Hőppe, F. Stadler, W. Schnick, T. Juestel, and P. Schmidt (2005). Phys. Status Solidi A. 202, 1727.

    Article  CAS  Google Scholar 

  12. Y. Q. Wang and A. J. Steck (2003). Appl. Phys. Lett. 82, 502.

    Article  CAS  Google Scholar 

  13. F. Lissner and T. Schleid (2017). Inorganics 5, 2.

    Article  Google Scholar 

  14. J. Zhou (2016). Coord. Chem. Rev. 315, 112.

    Article  CAS  Google Scholar 

  15. A. A. Fagin, G. K. Fukin, A. V. Cherkasov, A. F. Shestakov, A. P. Pushkarev, T. V. Balashova, A. A. Maleev, and M. N. Bochkarev (2016). Dalton. Trans. 45, 4558.

    Article  CAS  Google Scholar 

  16. H. Gysling and M. Tsutsui (1970). Adv. Organomet. Chem. 9, 361.

    Article  CAS  Google Scholar 

  17. A. A. Fagin, D. M. Kuzyaev, A. A. Maleev, E. V. Baranov, R. V. Rumyantcev, G. K. Fukin, A. F. Shestakov, A. I. Suchkov, A. V. Marugin, and M. N. Bochkarev (2019). Inorg. Chim. Acta 490, 200.

    Article  CAS  Google Scholar 

  18. W. J. Evans, G. W. Rabe, J. W. Ziller, and R. J. Doedens (1994). Inorg. Chem. 33, 2719.

    Article  CAS  Google Scholar 

  19. J. H. Melman, M. Fitzgerald, D. Freedman, T. J. Emge, and J. G. Brennan (1999). J. Am. Chem. Soc. 121, 10247.

    Article  CAS  Google Scholar 

  20. M. Kühling, R. McDonald, P. Liebing, L. Hilfert, M. J. Ferguson, J. Takats, and F. T. Edelmann (2016). Dalton Trans. 45, 10118.

    Article  Google Scholar 

  21. R. D. Shannon (1976). Acta Cryst. A. 32, 751.

    Article  Google Scholar 

  22. A. M. Bienfait, B. M. Wolf, K. W. Tornroos, and R. Anwander (2018). Inorg. Chem. 57, 5204.

    Article  CAS  Google Scholar 

  23. A. M. Dietel, C. Doring, G. Glatz, M. V. Butovskii, O. Tok, F. M. Schappacher, R. Pottgen, and R. Kempe (2009). Eur. J. Inorg. Chem. 2009, 1051.

    Article  Google Scholar 

  24. G. Depaoli, P. Ganis, and P. L. Zanonato (1993). Polyhedron 12, 1933.

    Article  CAS  Google Scholar 

  25. A. V. Protchenko and M. N. Bochkarev (1990). Instrum. Exp. Tech. 33, 206.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation of Basic Research and the government of the region of the Russian Federation, Project No. 18-43-520002. Authors thank Dr. N. N. Efimov (IONC RAS) for magnetic measurements at low temperature.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Kuznetsova or M. N. Bochkarev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fagin, A.A., Kuznetsova, O.V., Rumyantcev, R.V. et al. Neodymium–Dysprosium and Neodymium–Ytterbium Iodide–Sulfide–Nitride Clusters: Synthesis and Luminescence. J Clust Sci 30, 1277–1281 (2019). https://doi.org/10.1007/s10876-019-01552-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01552-5

Keywords

Navigation