Skip to main content

Advertisement

Log in

Selective Detection of Sub-hundred Picomolar Mercuric Ion in Aqueous Systems by Visible Spectrophotometry Using Gripe Water Functionalized Gold Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A selective and sensitive spectrophotometric determination of Hg2+ was designed based on gripe water functionalized gold nanoparticles (AuNP). Gripe water was employed as both a reducing and a stabilizing agent for the synthesis of gold nanoparticles. The sugar moieties of gripe water were responsible for the reduction of auric ions to Au and the resultant nanoparticles possessing an average particle size of 16 nm were highly stable over a period of 1 year. The gripe water-functionalized gold nanoparticle system was highly sensitive in detecting Hg2+ ions in aqueous medium, with the limit of detection being as low as 0.05 nM. It was also highly selective of mercury even in presence of eleven different commonly associated cations. The efficacy of the nanoparticle sensor system in the analysis of mercury in real-time samples such as bottled, tap, lake and river water has also been evaluated to be good.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. WHO, Mercury and Health Fact Sheet (WHO: Geneva, 2016). Accessed from http://www.who.int/mediacentre/factsheets/fs361/en/.

  2. U.S. Environmental Protection Agency, National Primary Drinking Water Standards, EPA, 816-F-01–007, EPA, Washington, DC (2001).

  3. G. Wang, C. Lim, L. Chen, H. Chon, J. Choo, J. Hong, and A. J. DeMello (2009). Anal. Bioanal. Chem. 394, 1827–1832.

    Article  CAS  PubMed  Google Scholar 

  4. F. X. Han, W. D. Patterson, Y. Xia, B. B. Maruthi Sridhar, and Y. Su (2006). Water Air Soil Pollut. 170, 161–171.

    Article  CAS  Google Scholar 

  5. W. Lu, X. Qin, A. M. Asiri, A. O. Al-Youbi, and X. Sun (2013). J. Nanopart. Res. 15, 1344.

    Article  CAS  Google Scholar 

  6. H. Erxleben and J. Ruzicka (2005). Anal. Chem. 77, 5124–5128.

    Article  CAS  PubMed  Google Scholar 

  7. N. Zhou, H. Chen, J. Li, and L. Chen (2013). Microchim. Acta 180, 493–499.

    Article  CAS  Google Scholar 

  8. L. Zhou, W. Xiong, and S. Liu (2015). J. Mater. Sci. 50, 769–776.

    Article  CAS  Google Scholar 

  9. Z. Chen, C. Zhang, H. Ma, T. Zhou, B. Jiang, M. Chen, and X. Chen (2015). Talanta 134, 603–606.

    Article  CAS  PubMed  Google Scholar 

  10. S. M. Lin, S. Geng, N. Li, N. B. Li, and H. Q. Luo (2016). Talanta 151, 106–113.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Wang, F. Yang, and X. Yang (2010). ACS Appl. Mater. Interfaces 2, 339–342.

    Article  CAS  PubMed  Google Scholar 

  12. Y. Zhou, H. Dong, L. Liu, M. Li, K. Xiao, and M. Xu (2014). Sens. Actuators B: Chem. 196, 106–111.

    Article  CAS  Google Scholar 

  13. G.-W. Wu, S.-B. He, H.-P. Peng, H.-H. Deng, A.-L. Liu, X.-H. Lin, X.-H. Xia, and W. Chen (2014). Anal. Chem. 86, 10955–10960.

    Article  CAS  PubMed  Google Scholar 

  14. N. R. Devi, M. Sasidharan, and A. K. Sundramoorthy (2018). J. Electrochem. Soc. 165, (8), B3046–B3053.

    Article  CAS  Google Scholar 

  15. W. Huang, Y. Zhou, Y. Deng, and Y. He (2018). Phys. Chem. Chem. Phys. 20, 4347–4350.

    Article  CAS  PubMed  Google Scholar 

  16. W. Huang, Y. Zhou, J. Du, Y. Deng, and Y. He (2018). Anal. Chem. 90, (3), 2384–2388.

    Article  CAS  PubMed  Google Scholar 

  17. M. Zhao, Y. Tao, W. Huang, and Y. He (2018). Phys. Chem. Chem. Phys. 20, 28644.

    Article  CAS  PubMed  Google Scholar 

  18. I. Capek (2015). J. Nanotechnol. Mater. Sci. 2, 1–18.

    Article  Google Scholar 

  19. Y. Zhou, W. Huang, and Y. He (2018). Sens. Actuators B 270, 187–191.

    Article  CAS  Google Scholar 

  20. K. D. Lee, P. C. Nagajyothi, T. V. M. Sreekanth, and S. Park (2015). J. Ind. Eng. Chem. 26, 67–72.

    Article  CAS  Google Scholar 

  21. M. Annadhasan, T. Muthukumarasamyvel, V. R. SankarBabu, and N. Rajendiran (2014). ACS Sustain. Chem. Eng. 2, 887–896.

    Article  CAS  Google Scholar 

  22. M. P. Patil, D. Ngabire, H. H. P. Thi, M.-D. Kim, and G.-D. Kim (2017). J. Clust. Sci. 28, 119–132.

    Article  CAS  Google Scholar 

  23. E. Kirubha and P. K. Palanisamy (2013). J. Nanosci. Nanotechnol. 13, 2289–2294.

    Article  CAS  PubMed  Google Scholar 

  24. I. Blumenthal (2000). J. R. Soc. Med. 93, 172–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. E. Kirubha, K. Vishista, and P. K. Palanisamy (2015). Appl. Nanosci. 5, 777–786.

    Article  CAS  Google Scholar 

  26. Y. Zhao, L. Gui, and Z. Chen (2017). Sens. Actuators B 241, 262–267.

    Article  CAS  Google Scholar 

  27. V. K. T. Ngo, D. G. Nguyen, T. P. Huynhand, and Q. V. Lam (2015). Nanosci. Nanotechnol. 7, 035016.

    Google Scholar 

  28. W. Chansuvarn and A. Imyim (2012). Microchim. Acta 176, 57–64.

    Article  CAS  Google Scholar 

  29. H. Yu, D. Long, and W. Huang (2018). Sens. Actuators B 264, 164–168.

    Article  CAS  Google Scholar 

  30. R. M. Tripathi, R. K. Gupta, P. Singh, A. S. Bhadwal, A. Shrivastav, N. Kumar, and B. R. Shrivastav (2014). Sens. Actuators B 204, 637–646.

    Article  CAS  Google Scholar 

  31. L. Castro, M. L. Blázquez, F. González, J. A. Munoz, and A. Ballester (2010). Chem. Eng. J. 164, 92.

    Article  CAS  Google Scholar 

  32. C. G. Kumar and S. K. Mamidyala (2011). Biotechnol. Prog. 27, (5), 1455–1463.

    Article  CAS  PubMed  Google Scholar 

  33. G. Sonavane, K. Tomoda, and K. Makino (2008). Colloids Surf. B 66, 274–280.

    Article  CAS  Google Scholar 

  34. C.-C. Huang and H.-T. Chang (2006). Anal. Chem. 78, 8332–8338.

    Article  CAS  PubMed  Google Scholar 

  35. G. Sener, L. Uzun, and A. Denizli (2014). Anal. Chem. 86, 514–520.

    Article  CAS  PubMed  Google Scholar 

  36. Y. R. Kim, R. K. Mahajan, J. S. Kim, and H. Kim (2010). ACS Appl. Mater. Interfaces 2, 292–295.

    Article  CAS  PubMed  Google Scholar 

  37. L. Li, B. Li, Y. Qi, and Y. Jin (2009). Anal. Bioanal. Chem. 393, 2051–2057.

    Article  CAS  PubMed  Google Scholar 

  38. K. Wu, B. Yang, X. Zhu, W. Chen, X. Luo, Z. Liu, X. Zhang, and Q. Liu (2018). New J. Chem. 42, 18749.

    Article  CAS  Google Scholar 

  39. Z. Chen, C. Zhang, Q. Gao, G. Wang, L. Tan, and Q. Liao (2015). Anal. Chem. 87, 10963–10968.

    Article  CAS  PubMed  Google Scholar 

  40. K.-C. Noh, Y.-S. Nam, H.-J. Lee, and K.-B. Lee (2015). Analyst 140, 8209J.

    Article  CAS  Google Scholar 

  41. Y. Cheon and W. H. Park (2015). Int. J. Mol. Sci. 17, 2006.

    Article  CAS  Google Scholar 

  42. I. Chanda, R. Bordoloi, D. D. Chakraborty, P. Chakraborty, and S. R. C. Das (2017). J. Appl. Pharm. Sci. 7, 081–084.

    CAS  Google Scholar 

  43. W. Chansuvarn, T. Tuntulani, and A. Imyim (2015). Trends Anal. Chem. 65, 1–22.

    Article  CAS  Google Scholar 

  44. Y. He, F. Tian, J. Zhou, and B. Jiao (2019). Microchim. Acta 186, 19.

    Article  CAS  Google Scholar 

  45. H. Liu, Y.-N. Ding, B. Yang, Z. Liu, X. Zhang, and Q. Liu (2019). ACS Sustain. Chem. Eng. 6, (11), 14383–14393.

    Article  CAS  Google Scholar 

  46. Y. Yaling and Y. He (2019). Anal. Sci. 35, 159–163.

    Article  PubMed  Google Scholar 

  47. M. Zhao, H. Yu, and Y. He (2019). Sens. Actuators: B Chem. 283, 329–333.

    Article  CAS  Google Scholar 

  48. J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519–4526.

    Article  CAS  PubMed  Google Scholar 

  49. Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu, and Q. Liu (2018). Sens. Actuators: B Chem. 273, 1635–1639.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Science and Technology and University Grants Commission, Government of India for the sponsored analytical facilities at the Department of Chemistry, Anna University, Chennai through DST-FIST and UGC-SAP schemes. Ms. R. Anitha is thankful to DST, New Delhi for providing Junior Research Fellowship (JRF) under DST-PURSE scheme (DST Ref. No: 9500/PD2/2014). The authors acknowledge the help rendered by Dr. E. Kirubha and Dr. S. Pugazhendhi with respect to discussions on earlier report and characterization of materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Rajarajeswari.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, R., Rajarajeswari, G.R. Selective Detection of Sub-hundred Picomolar Mercuric Ion in Aqueous Systems by Visible Spectrophotometry Using Gripe Water Functionalized Gold Nanoparticles. J Clust Sci 30, 907–917 (2019). https://doi.org/10.1007/s10876-019-01549-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01549-0

Keywords

Navigation