Skip to main content
Log in

NiO–CoO Hybrid Nanostructures: Preparation, Characterization and Application in Methanol Electro-Oxidation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

NiO–CoO hybrid nanostructures with improved electrocatalytic activity for methanol oxidation reaction were successfully synthesized via a simple two-step route. Ni/β-Co(OH)2 precursor was first prepared by a hydrothermal route at 100 °C for 24 h, employing Ni nanospheres, CoSO4·7H2O and l-lysine as the reactants; Then, NiO–CoO hybrid nanostructures were obtained by calcining the above precursor in air at 450 °C for 2 h. The as-obtained products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Cyclic voltammograms investigations showed that the as-obtained NiO–CoO hybrid nanostructures presented better electrochemical behavior in 1 M KOH solution than single NiO and CoO in the absence/presence of 0.5 M CH3OH. In the system containing 1 M KOH and 0.5 M CH3OH, the maximum current densities of various modified electrodes were in turn 175 μA cm−2 for the NiO–CoO/Ni foam (NF) electrode, 85 μA cm−2 for the NiO/NF electrode, 80 μA cm−2 for the CoO/NF electrode and 15 μA cm−2 for the Ni foam electrode at the potential of 0.6 V. Simultaneously, NiO–CoO hybrid nanostructures still exhibited the lower over-potential and higher stability. The above facts indicated that the as-prepared NiO–CoO hybrid nanostructures were potential candidates as the electrocatalyst for methanol oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Lu, J. P. Tu, C. D. Gu, X. H. Xia, X. L. Wang, and S. X. Mao (2011). J. Mater. Chem. 21, 4843.

    Article  CAS  Google Scholar 

  2. J. B. Wu, Z. G. Li, X. H. Huang, and Y. Lin (2013). J. Power Sources 224, 1.

    Article  CAS  Google Scholar 

  3. R. Ding, L. Qi, M. J. Jia, and H. Y. Wang (2013). Electrochim. Acta 113, 290.

    Article  CAS  Google Scholar 

  4. Y. P. Bi and G. X. Lu (2009). Electrochem. Commun. 11, 45.

    Article  CAS  Google Scholar 

  5. L. X. Chen, L. Liu, J. J. Feng, Z. G. Wang, and A. J. Wang (2016). J. Power Sources 302, 140.

    Article  CAS  Google Scholar 

  6. J. Liu, J. Wang, F. D. Kong, T. Huang, and A. S. Yu (2016). Catal. Commun. 73, 22.

    Article  CAS  Google Scholar 

  7. G. H. Yang, Y. Z. Zhou, H. B. Pan, C. Z. Zhu, S. F. Fu, C. M. Wai, D. Du, J. J. Zhu, and Y. H. Lin (2016). Ultrason. Sonochem. 28, 192.

    Article  CAS  PubMed  Google Scholar 

  8. T. H. T. Vu, T. T. T. Tran, H. N. T. Le, L. T. Tran, P. H. T. Nguyen, M. D. Nguyen, and B. N. Quynh (2016). Mater. Res. Bull. 73, 197.

    Article  CAS  Google Scholar 

  9. Z. I. Bedolla-Valde, Y. Verde-Gómez, A. M. Valenzuela-Muñiz, Y. Gochi-Ponce, M. T. Oropeza-Guzmán, G. Berhault, and G. Alonso-Núñez (2015). Electrochim. Acta 186, 76–84.

    Article  CAS  Google Scholar 

  10. C. D. Gu, M. L. Huang, X. Ge, H. Zheng, X. L. Wang, and J. P. Tu (2014). Int. J. Hydrogen Energy 39, 10892.

    Article  CAS  Google Scholar 

  11. Y. Y. Tong, C. D. Gu, J. L. Zhang, M. L. Huang, H. Tang, X. L. Wang, and J. P. Tu (2015). J. Mater. Chem. A 3, 4669.

    Article  CAS  Google Scholar 

  12. H. Y. Zhu, C. D. Gu, X. Ge, and J. P. Tu (2016). Electrochim Acta 222, 938.

    Article  CAS  Google Scholar 

  13. M. Jafarian, M. G. Mahjani, H. Heli, F. Gobal, H. Khajehsharifi, and M. H. Hamedi (2003). Electrochim. Acta 48, 3423.

    Article  CAS  Google Scholar 

  14. C. Q. Lv, C. Liu, and G. C. Wang (2014). Catal. Commun. 45, 83.

    Article  CAS  Google Scholar 

  15. S. Zafeiratos, T. Dintzer, D. Teschner, R. Blume, M. Hävecker, A. Knop-Gericke, and R. Schlögl (2010). J. Catal. 269, 309.

    Article  CAS  Google Scholar 

  16. B. K. Boggs and G. G. Botte (2010). Electrochim. Acta 55, 5287.

    Article  CAS  Google Scholar 

  17. M. U. Anu Prathap and S. Rajendra (2013). Nano Energy 2, 1046.

    Article  CAS  Google Scholar 

  18. P. Arunachalam, M. A. Ghanem, A. M. Al-Mayouf, and M. Al-shalwi (2017). Mater. Lett. 196, 365.

    Article  CAS  Google Scholar 

  19. L. Qian, L. Gu, L. Yang, H. Y. Yuan, and D. Xiao (2013). Nanoscale 5, 7388.

    Article  CAS  PubMed  Google Scholar 

  20. Y. H. Ni, L. N. Jin, L. Zhang, and J. M. Hong (2010). J. Mater. Chem. 20, 6430.

    Article  CAS  Google Scholar 

  21. C. Z. Yuan, X. G. Zhang, L. R. Hou, L. F. Shen, D. K. Li, F. Zhang, C. G. Fan, and J. M. Li (2010). J. Mater. Chem. 20, 10809.

    Article  CAS  Google Scholar 

  22. E. P. Zhang and Y. H. Ni (2016). RSC Adv. 6, 106465.

    Article  CAS  Google Scholar 

  23. X. Q. Du, Y. Ding, and X. Xiang (2015). Energy Environ. Focus 4, 307.

    Article  Google Scholar 

  24. J. Yu, Y. H. Ni, and M. H. Zhai (2017). J. Alloys Compd. 723, 904.

    Article  CAS  Google Scholar 

  25. N. S. McIntyre, D. D. Johnston, L. L. Coatsworth, R. D. Davidson, and J. R. Brown (1990). Surf. Interface Anal. 15, 265.

    Article  CAS  Google Scholar 

  26. S. Kundu, M. D. Mukadam, S. M. Yusuf, and M. Jayachandran (2013). CrystEngComm 15, 482.

    Article  CAS  Google Scholar 

  27. M. Asgari, M. G. Maragheh, R. Davarkhah, and E. Lohrasbi (2011). J. Electrochem. Soc. 158, K225.

    Article  CAS  Google Scholar 

  28. H. Heli and H. Yadegari (2010). Electrochim. Acta 55, 2139.

    Article  CAS  Google Scholar 

  29. Y. Y. Liang, H. L. Wang, P. Diao, W. Chang, G. S. Hong, Y. G. Li, M. Gong, L. M. Xie, J. G. Zhou, J. Wang, T. Z. Regier, F. Wei, and H. J. Dai (2012). J. Am. Chem. Soc. 134, 15849.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Y. Gao, S. L. Chen, D. X. Cao, G. L. Wang, and J. L. Yin (2010). J. Power Sources 195, 1757.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (21571005), High School Leading talent incubation programme of Anhui province (gxbjZD2016010) and Innovation Foundation of Anhui Normal University (2017xjj104) for the fund support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, F., Wang, M. & Ni, Y. NiO–CoO Hybrid Nanostructures: Preparation, Characterization and Application in Methanol Electro-Oxidation. J Clust Sci 29, 663–672 (2018). https://doi.org/10.1007/s10876-018-1379-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1379-1

Keywords

Navigation