Skip to main content
Log in

Polarizability of the Si60H60 Derivatives Containing Epoxide Moieties (Si60H60−2nOn with n up to 30): A DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have applied density functional theory calculations to study polarizability of the Si60H60 derivatives with epoxide moieties (Si60H60−2nOn with n up to 30). The results show that mean polarizability, α, of oxygen-containing silicon fullerene derivatives is higher than that of Si60H60. The mean polarizabilities of the isomers slightly depend on the positional relationship of the epoxide moieties, and are determined mainly by the number of epoxide moieties. Mean polarizabilities of Si60H60−2nOn linearly increase with n, and are characterized by the depression of polarizability. The formula describing the mean polarizability as a function of the number of epoxide groups has been obtained, which may be important for the design of silicon-containing nanostructures with regulated polar parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. D. Bonin and V. V. Kresin Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (World Scientific, Singapore, 1997).

    Book  Google Scholar 

  2. K. A. Jackson, M. Yang, I. Chaudhuri, and T. Frauenheim (2005). Phys. Rev. A 71, 033205.

    Article  Google Scholar 

  3. M. Broyer, R. Antoine, E. Benichou, I. Compagnon, and P. Dugourd (2002). C. R. Physique 3, 301.

    Article  CAS  Google Scholar 

  4. D. V. Konarev and R. N. Lyubovskaya (1999). Russ. Chem. Rev. 68, 19.

    Article  CAS  Google Scholar 

  5. R. G. Bulgakov, D. I. Galimov, and D Sh Sabirov (2007). JETP Lett. 85, 632.

    Article  CAS  Google Scholar 

  6. D. S. Sabirov, R. G. Bulgakov, and S. L. Khursan (2011). ARKIVOC viii, 200.

    Google Scholar 

  7. D. Fuchs, H. Rietschel, R. H. Michel, A. Fischer, P. Weis, and M. M. Kappes (1996). J. Phys. Chem. 100, 725.

    Article  CAS  Google Scholar 

  8. Z. Z. Latypov and O. F. Pozdnyakov (2006). Tech. Phys. Lett. 32, 381.

    Article  CAS  Google Scholar 

  9. D Sh Sabirov and R. G. Bulgakov (2011). Chem. Phys. Lett. 506, 52–56.

    Article  CAS  Google Scholar 

  10. P. W. Fowler, P. Lazzeretti, and R. Zanasi (1990). Chem. Phys. Lett. 165, 79.

    Article  CAS  Google Scholar 

  11. M. R. Pederson and A. A. Quong (1992). Phys. Rev. B: Condens. Matter Mater. Phys. 46, 13584.

    Article  CAS  Google Scholar 

  12. R. Antoine, P. Dugourd, D. Rayane, E. Benichou, M. Broyer, F. Chandezon, and C. Guet (1999). J. Chem. Phys. 110, 9771.

    Article  CAS  Google Scholar 

  13. V. A. Mal’tsev, O. A. Nerushev, S. A. Novopashin, and B. A. Selivanov (1993). JETP Lett. 57, 653.

    Google Scholar 

  14. I. Compagnon, R. Antoine, M. Broyer, Ph Dugourd, J. Lermé, and D. Rayane (2001). Phys. Rev. A 64, 025201.

    Article  Google Scholar 

  15. B. Shanker and J. Applequist (1994). J. Phys. Chem. 98, 6486.

    Article  CAS  Google Scholar 

  16. K. Ruud, D. Jonsson, and P. R. Taylor (2001). J. Chem. Phys. 114, 4331.

    Article  CAS  Google Scholar 

  17. D. S. Sabirov, A. A. Tukhbatullina, and R. G. Bulgakov (2012). Comput. Theor. Chem. 993, 113.

    Article  CAS  Google Scholar 

  18. D. S. Sabirov (2013). RSC Adv. 3, 19430.

    Article  CAS  Google Scholar 

  19. D. S. Sabirov (2014). RSC Adv. 4, 44996.

    Article  CAS  Google Scholar 

  20. K. Raghavachari and C. M. Rohlfing (1988). J. Chem. Phys. 89, 2219.

    Article  CAS  Google Scholar 

  21. C. H. Patterson and R. P. Messmer (1990). Phys. Rev. B 42, 7530.

    Article  CAS  Google Scholar 

  22. X. Zhu and X. C. Zeng (2003). J. Chem. Phys. 118, 3558.

    Article  CAS  Google Scholar 

  23. R. Schäfer, J. Woenckhaus, J. A. Becker, and F. Hensel (1995). Z. Naturforsch. 50, 445.

    Google Scholar 

  24. J. A. Becker, S. Schlecht, R. Schäfer, J. Woenckhaus, and F. Hensel (1996). Mater. Sci. Eng. A 217, (218), 1.

    Article  Google Scholar 

  25. J. A. Becker (1997). Angew. Chem. Int. Ed. Engl. 36, 1390.

    Article  CAS  Google Scholar 

  26. S. Vijayalakshmi, M. A. George, and H. Grebel (1997). Appl. Phys. Lett. 70, 708.

    Article  CAS  Google Scholar 

  27. E. C. Honea, A. Ogura, D. R. Peale, C. Félix, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold, and W. L. Brown (1999). J. Chem. Phys. 110, 12161.

    Article  CAS  Google Scholar 

  28. K. Jackson, M. Pederson, D. Porezag, Z. Hajnal, and T. Frauenheim (1997). Phys. Rev. B 55, 2549.

    Article  CAS  Google Scholar 

  29. A. Sieck, D. Porezag, T. Frauenheim, M. Pederson, and K. Jackson (1997). Phys. Rev. A 56, 4890.

    Article  CAS  Google Scholar 

  30. J. R. Chelikowsky, Y. Saad, S. Öğüt, I. Vasiliev, and A. Stathopoulos (2000). Phys. Status Solidi B 217, 173.

    Article  CAS  Google Scholar 

  31. J. R. Chelikowsky (2000). J. Phys. D 33, 33.

    Article  Google Scholar 

  32. K. Deng, J. Yang, and C. T. Chan (2000). Phys. Rev. A 61, 025201.

    Article  Google Scholar 

  33. K. Jackson (2000). Phys. Status Solidi B 217, 293.

    Article  CAS  Google Scholar 

  34. F. Torrens (2002). Physica E 13, 67.

    Article  Google Scholar 

  35. G. Maroulis, D. Begué, and C. Pouchan (2003). J. Chem. Phys. 119, 794.

    Article  CAS  Google Scholar 

  36. C. Pouchan and D. Bégue (2004). J. Chem. Phys. 121, 4628.

    Article  CAS  Google Scholar 

  37. B. K. Panda, S. Mukherjee, and S. N. Behera (2001). Phys. Rev. B 63, 045404.

    Article  Google Scholar 

  38. I. Vasiliev, S. Ögüt, and J. R. Chelikowsky (1997). Phys. Rev. Lett. 78, 4805.

    Article  CAS  Google Scholar 

  39. K. A. Jackson, M. R. Pederson, C.-Z. Wang, and K. M. Ho (1999). Phys. Rev. A 59, 3685.

    Article  CAS  Google Scholar 

  40. G. A. Rechtsteiner, O. Hampe, and M. F. Jarrold (2001). J. Phys. Chem. B 105, 4188.

    Article  CAS  Google Scholar 

  41. M. H. Nayfeh, L. Wagner, and L. Mitas (2002). Appl. Phys. Lett. 80, 841.

    Article  Google Scholar 

  42. V. Kumar and Y. Kawazoe (2003). Phys. Rev. Lett. 90, 055502.

    Article  Google Scholar 

  43. A. E. Galashev (2008). Semiconductors 42, 596.

    Article  CAS  Google Scholar 

  44. S. Inagaki, K. Yoshikawa, and Y. Hayano (1993). J. Am. Chem. Soc. 115, 3706.

    Article  CAS  Google Scholar 

  45. A. D. Zdetsis (2007). Phys. Rev. B 76, 075402.

    Article  Google Scholar 

  46. A. J. Karttunen, M. Linnolahti, and T. A. Pakkanen (2007). J. Phys. Chem. C 111, 2545.

    Article  CAS  Google Scholar 

  47. J. Jia, Y.-N. Lai, H.-S. Wu, and H. Jiao (2009). J. Phys. Chem. C 113, 7364.

    Article  Google Scholar 

  48. M. Anafcheh, R. Ghafourib, and N. L. Hadipour (2012). Physica E 44, 2099.

    Article  CAS  Google Scholar 

  49. R. Ghafouri, M. Anafcheh, and M. Zahedi (2014). Struct. Chem. 25, 575.

    Article  CAS  Google Scholar 

  50. R. Ghafouri and M. Anafcheh (2013). J. Fluorine. Chem. 145, 88.

    Article  CAS  Google Scholar 

  51. D. Heymann and R. B. Weisman (2006). C. R. Chimie 9, 1107.

    Article  CAS  Google Scholar 

  52. D. B. Cordes, P. D. Lickiss, and F. Rataboul (2010). Chem. Rev. 110, 2081.

    Article  CAS  Google Scholar 

  53. D. S. Sabirov, A. O. Terentyev, I. S. Shepelevich, and R. G. Bulgakov (2014). Comput. Theor. Chem. 1045, 86.

    Article  CAS  Google Scholar 

  54. K. E. Jelfs, E. Flikkema, and S. T. Bromley (2013). Phys. Chem. Chem. Phys. 15, 20438.

    Article  CAS  Google Scholar 

  55. O. P. Charkin, N. M. Klimenko, and Y.-S. Wang (2012). Russ. J. Inorg. Chem. 57, 970.

    Article  CAS  Google Scholar 

  56. M. Anafcheh, R. Ghafouri, F. Ektefa, and M. Zahedi (2015). Mol. Phys. 114, 819.

    Article  Google Scholar 

  57. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Account. 120, 215.

    Article  CAS  Google Scholar 

  58. P. C. Hariharan and J. A. Pople (1974). Mol. Phys. 27, 209.

    Article  CAS  Google Scholar 

  59. Y. Zhang, A. Wu, X. Xu, and Y. Yan (2007). J. Phys. Chem. A 111, 9431.

    Article  CAS  Google Scholar 

  60. R. Ghafouri and F. Ektefa (2015). Struct. Chem. 26, 507.

    Article  CAS  Google Scholar 

  61. M. Anafcheh and R. Ghafouri (2014). Physica E 56, 351.

    Article  CAS  Google Scholar 

  62. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347.

    Article  CAS  Google Scholar 

  63. M. S. Gordon, M. W. Schmidt, in C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria (eds), Advances in electronic structure theory: GAMESS a decade later in “Theory and Applications of Computational Chemistry: the first forty years” (Elsevier, Amsterdam, 2005).

  64. R. G. Bulgakov, D Sh Sabirov, and U. M. Dzhemilev (2013). Russ. Chem. Bul. 62, 304.

    Article  CAS  Google Scholar 

  65. D. Mancel, M. Jevric, E. S. Davies, M. Schröder, and A. N. Khlobystov (2013). Dalton Trans. 42, 5056.

    Article  CAS  Google Scholar 

  66. W. H. Powell, F. Cozzi, G. P. Moss, C. Thilgen, R. J.-R. Hwu, and A. Yerin (2002). Pure Appl. Chem. 74, 629.

    Article  CAS  Google Scholar 

  67. R. J. W. Le Fèvre (1965). Adv. Phys. Org. Chem. 3, 1.

    Google Scholar 

  68. A. N. Vereshchagin Polarizability of Molecules (Nauka, 1980) (in Russian).

  69. H. Kopp (1855); cf. S. Glasstone, Textbook of Physical Chemistry (Van Nostrand, 1946).

  70. R. F. W. Bader, T. A. Keith, K. M. Gough, and K. E. Laidig (1992). Mol. Phys. 75, 1167.

    Article  CAS  Google Scholar 

  71. D. S. Sabirov, R. R. Garipova, and R. G. Bulgakov (2012). Chem. Phys. Lett. 523, 92.

    Article  CAS  Google Scholar 

  72. A. A. Tukhbatullina, I. S. Shepelevich, and D Sh Sabirov (2017). Fuller. Nanotubes. Carbon Nanostruct. 25, 71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Seik Weng Ng for making us available his software (G98W) and hardware (machine time) facilities. The financial support of Research Council of Shahid Beheshti University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghafouri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3761 kb)

Supplementary material 2 (DOCX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Naderi, F., Ektefa, F. et al. Polarizability of the Si60H60 Derivatives Containing Epoxide Moieties (Si60H60−2nOn with n up to 30): A DFT Study. J Clust Sci 29, 889–896 (2018). https://doi.org/10.1007/s10876-018-1365-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1365-7

Keywords

Navigation