Skip to main content
Log in

Ab Initio Investigation of the Micro-species and Raman Spectra in Ca(NO3)2 Solution

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this work, the structural details and Raman spectra of the Ca(NO3)2(H2O) n=0–10 clusters were studied by using ab initio method. The results show that the main species in the cluster is the contact ion pair (CIP) when n = 1–7. When n = 8–10, the main species changes into solvent shared ion pair (SIP) CaNO3(H2O) n …NO3 in the bidentate form. One of the r Ca–N distances remains unchanged at ~2.95 Å, while the other one increases to more than 4.8 Å. The hydration distance r Ca–O remains at 2.42 Å. The contact between Ca2+ and NO3 leads to a red shift of the v 1–NO3 band while the polarization of water by Ca2+ leads to a blue shift. The vibrational frequency of water molecules remains unchanged for the same types of water molecules. Hydrogen bonds are the main reason for the red shift of vibrational frequency of water molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. T. Blades, M. Peschke, U. H. Verkerk, and P. Kebarle (2004). J. Am. Chem. Soc. 126, 11995.

    Article  CAS  Google Scholar 

  2. Y. Inada, H. Hayashi, K. Sugimoto, and S. Funahashi (1999). J. Phys. Chem. A 103, 1401.

    Article  CAS  Google Scholar 

  3. H. Ke, C. Linde, and J. M. Lisy (2015). J. Phys. Chem. A 119, 2037.

    Article  CAS  Google Scholar 

  4. N. Hewish, G. Neilson, and J. Enderby (2001). J. Am. Chem. Soc. 123, 431.

    Article  Google Scholar 

  5. F. Jalilehvand, D. Spangberg, P. Lindqvist-Reis, K. Hermansson, I. Persson, and M. Sandstro (2001). J. Am. Chem. Soc. 123, 431.

    Article  CAS  Google Scholar 

  6. M. F. Bush, R. J. Saykally, and E. R. Williams (2005). J. Am. Chem. Soc. 127, 16599.

    Article  Google Scholar 

  7. F. Perakis, L. D. Marco, A. Shalit, F. Tang, Z. R. Kann, T. D. Kuhne, R. Torre, M. Bonn, and Y. Nagata (2016). Chem. Rev. 116, 7590.

    Article  CAS  Google Scholar 

  8. D. J. Miller and J. M. Lisy (2006). J. Chem. Phys. 124, 024319-1.

    Google Scholar 

  9. T. Megyes, S. Balint, E. Peter, T. Grosz, I. Bako, H. Krienke, and M. Bellissent-Funel (2009). J. Phys. Chem. B 113, 4054.

    Article  CAS  Google Scholar 

  10. Z. Zeng, C. W. Liu, G. L. Hou, G. Feng, H. G. Xu, Y. Q. Gao, and W. J. Zheng (2015). J. Phys. Chem. A 119, 2845.

    Article  CAS  Google Scholar 

  11. V. T. Pham and J. L. Fulton (2013). J. Chem. Phys. 138, 044201-1.

    Google Scholar 

  12. J. Fulton, S. Heald, Y. Badyal, and J. Simonson (2003). J. Phys. Chem. A 107, 4688.

    Article  CAS  Google Scholar 

  13. T. Todorova, P. H. Hunenberger, and J. Hutter (2008). J. Chem. Theory Comput. 4, 779.

    Article  CAS  Google Scholar 

  14. Q. Dai, J. J. Xu, H. J. Li, and H. B. Yi (2015). Mol. Phys. 133, 1.

    Google Scholar 

  15. T. G. Chang and D. E. Irish (1973). J. Phys. Chem. 77, 52.

    Article  CAS  Google Scholar 

  16. D. W. James and M. T. Carrick (1982). J. Raman Spectrosc. 13, 115.

    Article  CAS  Google Scholar 

  17. M. Peleg (1972). J. Phys. Chem. 76, 1019.

    Article  CAS  Google Scholar 

  18. X. H. Li, L. J. Zhao, J. L. Dong, H. S. Xiao, and Y. H. Zhang (2008). J. Phys. Chem. B 112, 5032.

    Article  CAS  Google Scholar 

  19. M. Eigen and K. Z. Tamm (1962). Elektrochem 66, 93.

    CAS  Google Scholar 

  20. M. Eigen and K. Z. Tamm (1962). Elektrochem 66, 107.

    CAS  Google Scholar 

  21. H. Zhang and Y. H. Zhang (2009). J. Comput. Chem. 31, 2772.

    Article  Google Scholar 

  22. L. Jiang, T. Wende, R. Bergmann, G. Meijer, and K. R. Asmis (2010). J. Am. Chem. Soc. 132, 7398.

    Article  CAS  Google Scholar 

  23. W. W. Rudolph and G. Irmer (2013). Dalton Trans. 42, 3919.

    Article  CAS  Google Scholar 

  24. W. W. Rudolph, D. Fischer, G. Irmerc, and C. C. Pye (2009). Dalton Trans. 33, 6513.

    Article  Google Scholar 

  25. W. W. Rudolph, R. Masonb, and C. C. Pye (2000). Phys. Chem. Chem. Phys. 2, 5030.

    Article  CAS  Google Scholar 

  26. W. W. Rudolph and C. C. Pye (2002). Phys. Chem. Chem. Phys. 4, 4319.

    Article  CAS  Google Scholar 

  27. W. W. Rudolph and G. Irmer (2013). Dalton Trans. 42, 14460.

    Article  CAS  Google Scholar 

  28. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  29. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B 37, 785.

    Article  CAS  Google Scholar 

  30. R. Ditchfield, W. J. Hehre, and J. A. Pople (1971). J. Chem. Phys. 54, 724.

    Article  CAS  Google Scholar 

  31. V. S. Bryantsev, M. S. Diallo, and W. A. Goddard (2009). J. Phys. Chem. B 112, 9709.

    Article  Google Scholar 

  32. B. Mennucci, E. Cances, and J. Tomasi (1997). J. Phys. Chem. B 101, 10506.

    Article  CAS  Google Scholar 

  33. J. D. Chai and M. Head-Gordon (2008). Phys. Chem. Chem. Phys. 10, 6615.

    Article  CAS  Google Scholar 

  34. Z. Zeng, G. L. Hou, J. Song, G. Feng, H. G. Xu, and W. J. Zheng (2015). Phys. Chem. Chem. Phys. 17, 9135.

    Article  CAS  Google Scholar 

  35. D. Rappoport and F. Furche (2010). J. Chem. Phys. 133, 134105-1.

    Article  Google Scholar 

  36. C. N. Rowley and B. Roux (2012). J. Chem. Theory Comput. 8, 3526.

    Article  CAS  Google Scholar 

  37. A. P. Scott and L. Radom (1996). J. Phys. Chem. 100, 16502.

    Article  CAS  Google Scholar 

  38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. (Gaussian, Inc., Wallingford CT, 2013). Gaussian 09, Revision C.01.

  39. P. M. Vollmar (1963). J. Chem. Phys. 39, 2236.

    Article  CAS  Google Scholar 

  40. H. Brintzinger and R. E. Hester (1966). Inorg. Chem. 5, 980.

    Article  CAS  Google Scholar 

  41. R. E. Hester and W. E. L. Grossman (1966). Inorg. Chem. 5, 1308.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 21373251, 21573268), the Natural Science Foundation of Qinghai (No. 2015-ZJ-938Q), and the Young People Fund of Qinghai University (No. 2015-QGY-7) for financial support. We also acknowledge computing resources and time in the supercomputing center of National Super Computing Center in Shenzhen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhui Fang or Yan Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Zhou, H., Zhou, Y. et al. Ab Initio Investigation of the Micro-species and Raman Spectra in Ca(NO3)2 Solution. J Clust Sci 28, 2293–2307 (2017). https://doi.org/10.1007/s10876-017-1210-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1210-4

Keywords

Navigation