Skip to main content
Log in

The Effect of Intermolecular Hydrogen Bonding on the Polyaniline Water Complex

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The polyaniline water hydrogen-bonded complex was studied by first-principles calculation. The density functional theory method was used to calculate the structure characters, natural bond orbital charge distribution, infrared spectra and the frontier molecular orbital. Results showed that the H–O···H–N and C–N···H–O type intermolecular hydrogen bonds were formed. The bonds involved in the intermolecular H-bond were all influenced by the hydrogen bonding interaction. During the hydrogen bond formation, the polymer chains in the complexes were all charged, which can be an important factor contributing to the increase of electrical conductivity. The N1–H vibration was strongly influenced, and the locations as well as the intensities of N1–H absorption bands were all changed in the complexes. In the orbital transition of HOMO to LUMO, the electron density transferred from benzenoid ring to quinoid ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. J. Zhao, J. Y. Liu, L. C. Zhou, and K. L. Han (2007). J. Phys. Chem. B 111, 8940.

    Article  CAS  Google Scholar 

  2. C. F. Matta, J. Hernández-Trujillo, T. H. Tang, and R. F. W. Bader (2003). Chem. Eur. J. 9, 1940.

    Article  CAS  Google Scholar 

  3. G. J. Zhao and K. L. Han (2009). J. Phys. Chem. A 113, 14329.

    Article  CAS  Google Scholar 

  4. V. Kozlovskaya, O. Zavgorodnya, Y. Chen, K. Ellis, H. M. Tse, W. Cui, J. Anthony Thompson, and E. Kharlampieva (2012). Adv. Funct. Mater. 22, 3389.

    Article  CAS  Google Scholar 

  5. L. Guo, H. Sato, T. Hashimoto, and Y. Ozaki (2010). Macromolecules 43, 3897.

    Article  CAS  Google Scholar 

  6. D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, and J. Kido (2011). Adv. Funct. Mater. 21, 1375.

    Article  CAS  Google Scholar 

  7. M. E. Tessensohn, H. Hirao, and R. D. Webster (2013). J. Phys. Chem. C 117, 1081.

    Article  CAS  Google Scholar 

  8. C. V. Mahajan and V. Ganesan (2013). J. Phys. Chem. C 117, 5315.

    Article  CAS  Google Scholar 

  9. M. L. Huggins (1922). Science 55, 459.

    Article  CAS  Google Scholar 

  10. G. A. Jeffrey An Introduction to Hydrogen Bonding (Oxford University Press, New York, 1997), p. 103.

    Google Scholar 

  11. I. Mata, I. Alkorta, E. Molins, and E. Espinosa (2010). Chem. Eur. J. 16, 2442.

    Article  CAS  Google Scholar 

  12. J. U. Bowie (2011). Curr. Opin. Struct. Biol. 21, 42.

    Article  CAS  Google Scholar 

  13. S. Burattini, B. W. Greenland, D. H. Merino, W. Weng, J. Seppala, H. M. Colquhoun, W. Hayes, M. E. Mackay, I. W. Hamley, and S. J. Rowan (2010). J. Am. Chem. Soc. 132, 12051.

    Article  CAS  Google Scholar 

  14. K. P. Gierszal, J. G. Davis, M. D. Hands, D. S. Wilcox, L. V. Slipchenko, and D. Ben-Amotz (2011). J. Phys. Chem. Lett. 2, 2930.

    Article  CAS  Google Scholar 

  15. A. Wulf, K. Fumino, and R. Ludwig (2010). Angew. Chem. Int. Ed. 49, 449.

    Article  CAS  Google Scholar 

  16. L. T. Sin, W. Rahman, A. R. Rahmat, and A. A. Samad (2010). Polymer 51, 1206.

    Article  CAS  Google Scholar 

  17. L. F. Scatena, M. G. Brown, and G. L. Richmond (2001). Science 292, 908.

    Article  CAS  Google Scholar 

  18. J. F. Quinn and F. Caruso (2006). Adv. Funct. Mater. 16, 1179.

    Article  CAS  Google Scholar 

  19. C. Liang and S. Dai (2006). J. Am. Chem. Soc. 128, 5316.

    Article  CAS  Google Scholar 

  20. G. J. Zhao and K. L. Han (2007). J. Phys. Chem. A 111, 2469.

    Article  CAS  Google Scholar 

  21. G. J. Zhao and K. L. Han (2008). Biophys. J. 94, 38.

    Article  CAS  Google Scholar 

  22. A. A. Al-Saadi, E. J. Ocola, and J. Laane (2010). J. Phys. Chem. A 114, 7453.

    Article  CAS  Google Scholar 

  23. G. J. Zhao and K. L. Han (2011). Acc. Chem. Res. 45, 404.

    Article  Google Scholar 

  24. A. M. Wright, A. A. Howard, J. C. Howard, G. S. Tschumper, and N. I. Hammer (2013). J. Phys. Chem. A 117, 5435.

    Article  CAS  Google Scholar 

  25. P. Song and F. C. Ma (2013). Int Rev Phys Chem. 32, 589.

    Article  CAS  Google Scholar 

  26. Y. Cui, H. Zhao, J. Zhao, P. Li, P. Song, and L. Xia (2015). New J. Chem. 39, 9910.

    Article  CAS  Google Scholar 

  27. M. Tarek and D. J. Tobias (2002). Phys. Rev. Lett. 88, (138101), 1.

    Google Scholar 

  28. G. Maes, J. Smets, L. Adamowicz, W. McCarthy, M. K. Van Bael, L. Houben, and K. Schoone (1997). J. Mol. Struct. 410, 315.

    Google Scholar 

  29. S. Schlucker, J. Koster, R. K. Singh, and B. P. Asthana (2007). J. Phys. Chem. A 111, 5185.

    Article  CAS  Google Scholar 

  30. R. D. Mountain (2010). J. Phys. Chem. B 114, 16460.

    Article  CAS  Google Scholar 

  31. J. Smets, W. McCarthy, G. Maes, and L. Adamowicz (1999). J. Mol. Struct. 476, 27.

    Article  CAS  Google Scholar 

  32. K. Schoone, J. Smets, R. Ramaekers, L. Houben, L. Adamowicz, and G. Maes (2003). J. Mol. Struct. 649, 61.

    Article  CAS  Google Scholar 

  33. N. Gospodinova and E. Tomšík (2015). Prog. Polym. Sci. 43, 33.

    Article  CAS  Google Scholar 

  34. M. Nechtschein, C. Santier, J. P. Travers, J. Chroboczek, A. Alix, and M. Ripert (1987). Synth. Met. 18, 311.

    Article  CAS  Google Scholar 

  35. E. S. Matveeva (1996). Synth. Met. 79, 127.

    Article  CAS  Google Scholar 

  36. J. Y. Shimano and A. G. MacDiarmid (2001). Synth. Met. 123, 251.

    Article  CAS  Google Scholar 

  37. O. Omelchenko, E. Tomšík, A. Zhigunov, O. Guskova, O. Gribkova, and N. Gospodinova (2013). Macromol. Chem. Phys. 214, 2739.

    Article  CAS  Google Scholar 

  38. J. Casanovas, M. Canales, G. Fabregat, A. Meneguzzi, and C. Alemán (2012). J. Phys. Chem. B 116, 7342.

    Article  CAS  Google Scholar 

  39. M. Canales, D. Aradilla, and C. Alemán (2011). J. Polym. Sci. Part B: Polym. Phys. 49, 1322.

    Article  CAS  Google Scholar 

  40. J. Romanova, G. Madjarova, A. Tadjer, and N. Gospodinova (2011). Int. J. Quantum Chem. 111, 435.

    Article  CAS  Google Scholar 

  41. J. Romanova, J. Petrova, A. Tadjer, and N. Gospodinova (2010). Synth. Met. 160, 1050.

    Article  CAS  Google Scholar 

  42. J. Romanova, J. Petrova, A. Ivanova, A. Tadjer, and N. Gospodinova (2010). J. Mol. Struct. Theochem. 954, 36.

    Article  CAS  Google Scholar 

  43. H. Zhekova, A. Tadjer, A. Ivanova, J. Petrova, and N. Gospodinova (2007). Int. J. Quantum Chem. 107, 1688.

    Article  CAS  Google Scholar 

  44. Y. P. Yurenko, R. O. Zhurakivsky, S. P. Samijlenko, and D. M. Hovorun (2011). J. Biomol. Struct. Dyn. 29, 51.

    Article  CAS  Google Scholar 

  45. T. Y. Nikolaienko, L. A. Bulavin, and D. M. Hovorun (2014). Comput. Theor. Chem. 1050, 15.

    Article  CAS  Google Scholar 

  46. T. Y. Nikolaienko, L. A. Bulavin, and D. M. Hovorun (2012). Phys. Chem. Chem. Phys. 14, 7441.

    Article  CAS  Google Scholar 

  47. A. V. Iogansen (1999). Spectrochim. Acta, Part A 55, 1585.

    Article  Google Scholar 

  48. A. V. Iogansen, B. V. Rassadin, and N. P. Sorokina (1989). Theor. Exp. Chem. 24, 446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Duan, Y. & Liu, J. The Effect of Intermolecular Hydrogen Bonding on the Polyaniline Water Complex. J Clust Sci 28, 1071–1081 (2017). https://doi.org/10.1007/s10876-016-1104-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1104-x

Keywords

Navigation