Skip to main content
Log in

Synthesis, Crystal Structure, Vibrational and Optical Properties of (Hdea)4(V7O19F)∙0.42H2O, an Original (V7O19F)4− Cluster Oxyfluoride

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Synthesis, crystal structure, IR and Raman spectroscopies and optical analysis are reported for a new fluorovanadate with organic cations (Hdea)4(V7O19F)∙0.42H2O (dea: diethylamine). The title compound crystallizes in orthorhombic system, space group P212121, a = 11.486 (5) Å, b = 14.779 (5) Å, c = 23.243 (5) Å, Z = 4, V = 3,946 (2) Å3, R = 0.025 with 6,936 reflections. The atomic arrangement can be described as an alternation of inorganic and organic layers. The anionic layer is built up of original clusters (V7O19F)4− which are composed of three VO5F octahedra and four VO4 tetrahedra combined via shared edges and corners. The cohesion between the fluorovanadate groups, organic cations and water molecules is provided by a network hydrogen-bonding. The IR and Raman spectra exhibit characteristic bands of all groups present in the structure. The optical band gap is determined to be 2.5 eV by UV–Vis-T90+ diffuse reflectance spectra, which revealed the nature of semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Butler, M. J. Clague, and G. E. Meister (1994). Chem. Rev. 94, 625–638.

    Article  CAS  Google Scholar 

  2. K. H. Thompson, J. H. McNeil, and C. Orvig (1999). Chem. Rev. 99, 2561–2572.

    Article  CAS  Google Scholar 

  3. D. C. Crans (2000). J. Inorg. Biochem. 80, 123–131.

    Article  CAS  Google Scholar 

  4. D. C. Crans, J. J. Smee, E. Gaidamauskas, and L. Yang (2004). Chem. Rev. 104, 849–902.

    Article  CAS  Google Scholar 

  5. C. N. Caughlan, H. M. Smith, and K. Watenpaugh (1966). Inorg. Chem. 5, 2131–2134.

    Article  CAS  Google Scholar 

  6. W. Priebsch and D. Rehder (1990). Inorg. Chem. 29, 3013–3019.

    Article  CAS  Google Scholar 

  7. D. C. Crans, R. W. Marshman, M. S. Gottlieb, O. P. Anderson, and M. M. Miller (1992). Inorg. Chem. 31, 4939–4949.

    Article  CAS  Google Scholar 

  8. K. Waltersson (1979). J. Solid State Chem. 28, 121–131.

    Article  CAS  Google Scholar 

  9. T. Mahenthirarajah, Y. Li, and P. Lightfoot (2008). Inorg. Chem. 47, 9097–9102.

    Article  CAS  Google Scholar 

  10. F. Himeur, P. K. Allan, S. J. Teat, R. J. Goff, R. E. Morris, and P. Lightfoot (2010). Dalton. Trans. 39, 6018–6020.

    Article  CAS  Google Scholar 

  11. F. H. Aidoudi, D. W. Aldous, R. J. Goff, M. Z. Slawin Alexandra, J. P. Attfield, R. E. Morris, and P. Lightfoot (2011). Nat. Chem. 3, 801–806.

    Article  CAS  Google Scholar 

  12. M. D. Donakowski, R. Gautier, J. Yeon, D. T. Moore, J. C. Nino, P. S. Halasyamani, and K. R. Poeppelmeier (2012). J. Am. Chem. Soc. 134, 7679–7689.

    Article  CAS  Google Scholar 

  13. D. W. Aldous, A. M. Z. Slawin, and P. Lightfoot (2008). J Solid State Chem. 181, (11), 3033–3036.

    Article  CAS  Google Scholar 

  14. D. W. Aldous, N. F. Stephens, and P. Lightfoot (2007). Dalton Trans. 4207–4213.

  15. D. W. Aldous, N. F. Stephens, and P. Lightfoot (2007) Dalton Trans. (22), 2271–2282.

  16. N. F. Stephens, M. Buck, and P. Lightfoot (2005). J. Mater. Chem. 15, 4298–4300.

    Article  CAS  Google Scholar 

  17. F. H. Aidoudi, C. Black, K. S. A. Arachchige, M. Z. Slawin Alexandra, R. E. Morris, and P. Lightfoot (2014). Dalton Trans. 43, 568–575.

    Article  CAS  Google Scholar 

  18. F. H. Aidoudi, P. J. Byrne, P. K. Allan, S. J. Teat, P. Lightfoot, and R. E. Morris (2011). Dalton Trans. 40, 4324–4331.

    Article  CAS  Google Scholar 

  19. L. Clark, J. C. Orain, F. Bert, M. A. De Vries, F. H. Aidoudi, R. E. Morris, P. Lightfoot, J. S. Lord, M. T. F. Telling, P. Bonville, J. P. Attfield, P. Mendels, and A. Harisson (2013). Phys. Rev. Lett. 110, 207208.

    Article  CAS  Google Scholar 

  20. D. W. Aldous, N. F. Stephens, and P. Lightfoot (2007). Inorg. Chem. 46, 3996–4001.

    Article  CAS  Google Scholar 

  21. S. Rostamzadehmansor, G. Ebrahimzadehrajaei, S. Ghammamy, K. Mehrani, and L. Saghatforoush (2008). J. Fluor. Chem. 129, 674–679.

    Article  CAS  Google Scholar 

  22. P. DeBurgomaster, W. Ouellette, H. Liu, C. J. O’Connor, G. T. Yee, and J. Zubieta (2010). Inorg. Chim. Acta 363, 1102–1113.

    Article  CAS  Google Scholar 

  23. R. C. Haushalter, L. M. Meyer, and J. Zubieta in M. H. Chisholm (ed.), Early Transition Metal Clusters with π-Donor Ligands (VCH Publishers, New York, 1995), pp. 217–246.

    Google Scholar 

  24. D. J. Chesnut, D. Hagrman, P. J. Zapf, R. P. Hammond, R. L. Laduca, R. C. Haushalter, and J. Zubieta (1999). Coord. Chem. Rev. 190–192, 737.

    Google Scholar 

  25. R. C. Finn, J. Zubieta, and R. C. Haushalter (2003). Prog. Inorg. Chem. 51, 421.

    CAS  Google Scholar 

  26. M. I. Khan, Q. Chen, H. Höpe, S. Parkin, C. J. O’Connor, and J. Zubieta (1993). Inorg. Chem. 32, 2929–2937.

    Article  CAS  Google Scholar 

  27. C. Ninclaus, D. Riou, and G. Férev (1997) Chem. Commun. 851–852.

  28. A. Müller, R. Rohlfing, A.-L. Barra, and D. Gatteschi (1993). Adv. Mater. 5, 915–917.

    Article  Google Scholar 

  29. A. Müller, J. Meyer, H. Bögge, A. Stammlerand, and A. Botar (1998). Chem. Eur. J. 4, 1388–1397.

    Article  Google Scholar 

  30. S. Ahmad, A. A. Isab, S. Ali, and A. R. Al-Arfaj (2006). Polyhedron 25, 1633–1645.

    Article  CAS  Google Scholar 

  31. M. D. Smith, S. M. Blau, K. B. Chang, T. T. Tran, M. Zeller, P. S. Halasyamani, J. Schrier, and A. J. Norquist (2012). J. Solid State Chem. doi:10.1016/j.jssc.2012.02.024.

    Google Scholar 

  32. M. Aureliano and D. C. Crans (2009). J. Inorg. Biochem. doi:10.1016/j.jinorgbio.2008.11.010.

    Google Scholar 

  33. A. Sarkar and S. Pal (2008). Polyhedron. doi:10.1016/j.poly.2008.08.001.

    Google Scholar 

  34. V. W. Day, W. G. Klemperer, and O. M. Yaghi (1989). J. Am. Chem. Soc. 111, 4518–4519.

    Article  CAS  Google Scholar 

  35. V. W. Day, W. G. Klemperer, and O. M. Yaghi (1989). J. Am. Chem. Soc. 111, 5959–5961.

    Article  CAS  Google Scholar 

  36. D. Hou, K. S. Hagen, and C. L. Hill (1992). J. Am. Chem. Soc. 114, 5864–5866.

    Article  CAS  Google Scholar 

  37. D. Hou, K. S. Hagen, and C. L. Hill (1993). J. Chem. Soc Chem. Commun. doi:10.1039/C39930000426.

    Google Scholar 

  38. Bruker APEX2 and SAINT (Bruker AXS Inc, Madison, 2009).

    Google Scholar 

  39. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, and R. Spagna (1999). J. Appl. Crystallogr. 32, 115–119.

    Article  CAS  Google Scholar 

  40. G. Sheldrick (2008). Acta Cryst. A64, 112–122.

    Article  Google Scholar 

  41. L. J. Farrugia (1999). J. Appl. Crystallogr. 32, 837–838.

    Article  CAS  Google Scholar 

  42. A. L. Spek PLATON, A Multipurpose Crystallographic Tool (Utrecht University, Utrecht, The Netherlands, 2001).

    Google Scholar 

  43. K. Brandenburg DIAMOND 2.0 Visual Crystal Structure Information System (Crystal Impact Gbr, Germany, 2007).

    Google Scholar 

  44. W. H. Baur (1974). Acta Cryst. doi:10.1107/S0567740874004560.

    Google Scholar 

  45. P. DeBurgomaster and J. Zubieta (2010). Acta Cryst. 66, m1303–m1303.

    CAS  Google Scholar 

  46. N. Buchholz, M. Leimkühler, L. Kiriazis, and R. Mattes (1988). Inorg. Chem. 27, 2035–2039.

    Article  CAS  Google Scholar 

  47. I. D. Brown (1992). Acta Cryst. B48, 553–572.

    Article  CAS  Google Scholar 

  48. N. E. Bresse and M. O’Keeffe (1991). Acta Cryst. B47, 192–197.

    Article  Google Scholar 

  49. I. D. Brown (1976). Acta Cryst. doi:10.1107/S0567739476000041.

    Google Scholar 

  50. A. Grezechnik and P. F. McMillan (1995). J. Phys. Chem. Solids 56, 159–164.

    Article  Google Scholar 

  51. J. Chrappová, P. Schwendt, and J. Marek (2005). J. Fluor. Chem 126, 1297–1302.

    Article  Google Scholar 

  52. J. Kang, Y. Yang, S. Pan, H. Yu, and Z. Zhou (2014). J. Mol. Struct. doi:10.1016/j.molstruc.2013.10.009.

    Google Scholar 

  53. H. Zhai, S. Liu, J. Peng, N. Hu, and H. Jia (2004). J. Chem. Crystallogr. 34, 541–548.

    Article  CAS  Google Scholar 

  54. H. Nefzi, F. Sediri, H. Hamzoui, and N. Gharbi (2012). J. Solid State Chem. 190, 150–156.

    Article  CAS  Google Scholar 

  55. Y.-T. Li, C.-Y. Zhu, Z.-Y. Wu, M. Jiang, and C.-W. Yan (2010). Transit. Met. Chem. 35, 597–603.

    Article  CAS  Google Scholar 

  56. R. L. Frost and S. J. Palmer (2011). Spectrochim Acta A. doi:10.1016/j.saa.2010.10.002.

    Google Scholar 

  57. N. V. Venkataraman, S. Bhagyalakshmi, S. Vasudevan, and R. Seshadri (2002). Phys. Chem. Chem. Phys. 4, 4533–4538.

    Article  CAS  Google Scholar 

  58. L. Klištincová and E. Rakovský (2010). Transit. Met. Chem. 35, 229–236.

    Article  Google Scholar 

Download references

Acknowledgments

The crystal data collection of the title compound was done in the “Department of Chemistry, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3038 Sfax, Tunisia”. We are grateful to Abdelhamid Ben Salah who supervised this experiment.

The spectrum Raman was done in “Laboratory of ferroelectric materials, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3038 Sfax, Tunisia. We grateful to Hamadi Khemkhem who supervised this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Omri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, I., Graia, M. & Mhiri, T. Synthesis, Crystal Structure, Vibrational and Optical Properties of (Hdea)4(V7O19F)∙0.42H2O, an Original (V7O19F)4− Cluster Oxyfluoride. J Clust Sci 26, 815–825 (2015). https://doi.org/10.1007/s10876-014-0768-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0768-3

Keywords

Navigation