Skip to main content
Log in

A Synergy of ZnO and ZnWO4 in Composite Nanostructures Deduced from Optical Properties and Photocatalysis

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

ZnO/ZnWO4 composite rod-like nanoparticles were synthesized by low-temperature soft solution method at 95 °C with different reaction times (1–120 h), in the presence of non-ionic copolymer surfactant Pluronic F68. Obtained nanoparticles had diameters in the range around 10 nm and length of 30 nm. Optical properties such as reflection and room temperature photoluminescence of obtained samples showed strong dependence on their crystallinity and composition. Photocatalytic activity of ZnO/ZnWO4 nanopowders was checked using photodegradation of selected dyes as model system. Obtained results were correlated with specific surface area, particle sizes, crystallinity and ZnO/ZnWO4 ratio of the samples. As crystallinity of ZnWO4 component in the ZnO/ZnWO4 increase, photocatalytic activity also increases. The main findings can be explained by charge transfer reactions that follow light absorption by ZnO and ZnWO4 in nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Hoffman, S. Martin, W. Choi, and D. Bahnemann (1995). Chem. Rev. 95, 69.

    Article  Google Scholar 

  2. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan (2003). Energy Mater. Sol. Cells 77, 65.

    Article  CAS  Google Scholar 

  3. H. H. Wang, C. S. Xie, W. Zhang, S. Z. Cai, Z. H. Yang, and Y. H. Gui (2007). J. Hazard. Mater. 141, 645.

    Article  CAS  Google Scholar 

  4. W. I. Park, G. C. Yi, M. Kin, and S. J. Pennycook (2003). Adv. Mater. 15, 526.

    Article  CAS  Google Scholar 

  5. P. Li, Y. Wei, H. Liu and X. Wang (2004). Chem. Commun. 2856.

  6. X. Zhao and Y. F. Zhu (2006). Environ. Sci. Technol. 40, 3367.

    Article  CAS  Google Scholar 

  7. X. Zhao, W. Q. Yao, Y. Wu, S. C. Zhang, H. P. Yang, and Y. F. Zhu (2006). J. Solid State Chem. 179, 2562.

    Article  CAS  Google Scholar 

  8. H. B. Fu, J. Lin, L. W. Zhang, and Y. F. Zhu (2006). Appl. Catal. A 306, 58.

    Article  CAS  Google Scholar 

  9. G. L. Huang, C. Zhang, and Y. F. Zhu (2007). J. Alloys Compd. 432, 269.

    Article  CAS  Google Scholar 

  10. J. Bi, L. Wu, Z. Li, Z. Ding, X. Wang, and X. Fu (2009). J. Alloys Compd. 480, 684.

    Article  CAS  Google Scholar 

  11. A. Kalinko, A. Kuzmin, and R. A. Evarestov (2009). Solid State Commun. 149, 425.

    Article  CAS  Google Scholar 

  12. H. Fu, P. Chengesi, L. Zhang, and Y. Zhu (2007). Mater. Res. Bull. 42, 696.

    Article  CAS  Google Scholar 

  13. A. Dodd, A. McKiley, T. Tsuzuki, and M. Saunders (2009). J. Eur. Ceram. Soc. 29, 139.

    Article  CAS  Google Scholar 

  14. I. Lj. Validžić, T. D. Savić, R. M. Krsmanović, D. J. Jovanović, M. M. Novaković, M. Č. Popović and M. I. Čomor (2012). Mat. Sci. Eng. B 177, 645.

  15. K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, and T. Siemieniewska (1985). Pure Appl. Chem. 57, 603.

    Article  CAS  Google Scholar 

  16. E. P. Barrett, L. G. Joyner, and P. H. Halenda (1951). J. Am. Chem. Soc. 73, 373.

    Article  CAS  Google Scholar 

  17. H. Zhang, G. Chen, G. Yang, J. Zhang, and X. Lu (2007). J. Mater. Sci: Mater. Electron. 18, 381.

    Article  Google Scholar 

  18. L. S. Panchakarla, Y. Sundarayya, S. Manjunatha, A. Sundaresan, and C. N. R. Rao (2010). ChemPhysChem. 11, 1673.

  19. Y. Kim, Y. Kim, and S. Kang (2010). J. Phys. Chem. C 114, 17894.

    Article  CAS  Google Scholar 

  20. M. Bonnani, L. Spanhel, M. Lerch, E. Füglein, and G. Müller (1998). Chem. Mater. 10, 304.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was granted by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Project No. III45020, III45001, ON172015 and ON172056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana I. Čomor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savić, T.D., Validžić, I.L., Novaković, T.B. et al. A Synergy of ZnO and ZnWO4 in Composite Nanostructures Deduced from Optical Properties and Photocatalysis. J Clust Sci 24, 679–688 (2013). https://doi.org/10.1007/s10876-013-0562-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0562-7

Keywords

Navigation