Skip to main content
Log in

Influence of Surfactants and Charges on CdSe Quantum Dots

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Surface effects significantly influence the functionality of semiconductor nanocrystals. High quality nanocrystals can be achieved with good control of surface passivation by various hydrophobic ligands. In this work, the chemistry between CdSe quantum dots and common surface capping ligands is investigated using density functional theory (DFT). We discuss the electronic structures and optical properties of small CdSe clusters controlled by their size of particle, self-organization, capping ligands, and positive charges. The chosen model ligands reproduce good structural and energetic description of the interactions between the ligands and quantum dots. In order to capture the chemical nature and energetics of the interactions between the capping ligands and CdSe quantum dots, we found that PMe3 is needed to adequately model trioctylphosphine (TOP), NH3 is sufficient for amines, while OPH2Me could be used to model trioctylphosphine oxide. The relative binding interaction strength between ligands was found to decrease in order Cd–O > Cd–N > Cd–P with average binding energy per ligand being −25 kcal/mol for OPH2Me, −20 kcal/mol for NH3 and −10 kcal/mol for PMe3. Charges on studied stoichiometric clusters were found to have a significant effect on their structures, binding energies, and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. C. B. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706.

    Article  CAS  Google Scholar 

  2. X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos (2000). Nature 404(6773), 59.

    Article  CAS  Google Scholar 

  3. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher, and A. P. Alivisatos (2003). Nat. Mater. 2, 382.

    Article  CAS  Google Scholar 

  4. P. V. Kamat (2008). J. Phys. Chem. C. 112, 18737.

    CAS  Google Scholar 

  5. P. V. Kamat (2007). J. Phys. Chem. C. 111, 2834.

    Article  CAS  Google Scholar 

  6. J. Y. Lek, L. F. Xi, B. E. Kardynal, L. H. Wong, and Y. M. Lam (2011). ACS Appl. Mater. Interfaces 3, 287.

    Article  CAS  Google Scholar 

  7. I. Lokteva, N. Radychev, F. Witt, H. Borchert, J. Parisi, and J. Kolny-Olesiak (2010). J. Phys. Chem. C. 114, 12784.

    Article  CAS  Google Scholar 

  8. M. Bruchez Jr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos (1998). Science 281, 2013.

    Article  CAS  Google Scholar 

  9. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos (2001). J. Phys. Chem. B 105, (37), 8861.

    Article  CAS  Google Scholar 

  10. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin (2002). Science 295, 1506.

    Article  Google Scholar 

  11. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi (2008). Photonics 2, 247.

    Article  CAS  Google Scholar 

  12. L. Bakueva, S. Musikhin, M. A. Hines, T.-W. F. Chang, M. Tzolov, G. D. Scholes, and E. H. Sargent (2003). Appl. Phys. Lett. 82, 2895.

    Article  CAS  Google Scholar 

  13. D. A. Tryk, A. Fujishima, and K. Honda (2000). Electrochim. Acta 45, 2363.

    Article  CAS  Google Scholar 

  14. W. J. Parak, D. Gerion, T. Pellegrino, D. Zanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, and A. P. Alivisatos (2003). Nanotechnology 14, (7), R15.

    Article  CAS  Google Scholar 

  15. X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss (2001). Single Mol. 2, (4), 261.

    Article  CAS  Google Scholar 

  16. X. Michalet, F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss (2005). Science 307, 538.

    Article  CAS  Google Scholar 

  17. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi (2005). Nat. Mater. 4, 435.

    Article  CAS  Google Scholar 

  18. R. Gill, M. Zayats, and I. Willner (2008). Angew. Chem. Int. Ed. 47, 7602.

    Article  CAS  Google Scholar 

  19. A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and T. F. Kuech (1997). J. Chem. Educ. 74, 680.

    Article  CAS  Google Scholar 

  20. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus (1996). Nature 383, (6603), 802.

    Article  CAS  Google Scholar 

  21. L. Manna, E. Scher, and A. P. Alivisatos (2000). J. Am. Chem. Soc. 122, 12700.

    Article  CAS  Google Scholar 

  22. W. Wang, S. Banerjee, S. G. Jia, M. L. Steigerwald, and I. P. Herman (2007). Chem. Mater. 19, 2573.

    Article  CAS  Google Scholar 

  23. Z. A. Peng and X. G. Peng (2001). J. Am. Chem. Soc. 123, (1), 183.

    Article  CAS  Google Scholar 

  24. D. Wu, M. E. Kordesch, and P. G. V. Patten (2005). Chem. Mater. 17, 6436.

    Article  CAS  Google Scholar 

  25. V. Dzhagan, I. Lokteva, C. Himcinschi, X. Jin, J. Kolny-Olesiak, and D. R. Zahn (2011). Nanoscale Res. Lett. 6, 79.

    Article  Google Scholar 

  26. M. Epifani, E. Pellicer, J. Arbiol, N. Sergent, T. Pagnier, and J. R. Morante (2008). Langmuir 24, (19), 11182.

    Article  CAS  Google Scholar 

  27. X. Chen, A. C. S. Samia, Y. Lou, and C. Burda (2005). J. Am. Chem. Soc. 127, 4372.

    Article  CAS  Google Scholar 

  28. B. Mahler, N. Lequeux, and B. Dubertret (2009). J. Am. Chem. Soc. 132, 953.

    Article  CAS  Google Scholar 

  29. A. Morris-Cohen, M. T. Frederick, G. D. Lilly, E. A. McArthur, and E. A. Weiss (2010). J. Phys. Chem. Lett. 1, 1078.

    Article  CAS  Google Scholar 

  30. M. Mulvihill, S. Habas, I. Jen-La Plante, J. Wan, and T. Mokari (2010). Chem. Mater. 22, 5251.

    Article  CAS  Google Scholar 

  31. D. A. Navarro, S. Banerjee, D. S. Aga, and D. F. Watson (2010). J. Colloid Interface Sci. 348, 119.

    Article  CAS  Google Scholar 

  32. M. D. Regulacio and M. Y. Han (2010). Acc. Chem. Res. 43, 621.

    Article  CAS  Google Scholar 

  33. P. Zrazhevskiy, M. Sena, and X. Gao (2010). Chem. Soc. Rev. 39, 4326.

    Article  CAS  Google Scholar 

  34. S. Rosenthal, J. Chang, O. Kovtun, J. R. McBride, and I. D. Tomlinson (2011). Chem. Biol. 18, 10.

    Article  CAS  Google Scholar 

  35. K. Susumu, B. C. Mei, and H. Mattoussi (2009). Nat. Protoc. 4, 424.

    Article  CAS  Google Scholar 

  36. L. R. Becerra, C. B. Murray, G. G. Griffin, and M. G. Bavendi (1994). J. Chem. Phys. 100, 3297.

    Article  CAS  Google Scholar 

  37. J. E. B. Katari, V. L. Colven, and A. P. Alivistos (1994). J. Phys. Chem. 98, 4109.

    Article  CAS  Google Scholar 

  38. S. Sharma, Z. S. Pillai, and P. V. Kamat (2003). J. Phys. Chem. B 107, 10088.

    Article  CAS  Google Scholar 

  39. A. Haesselbarth, A. Eychmueller, and H. Weller (1993). Chem. Phys. Lett. 203, 271.

    Article  CAS  Google Scholar 

  40. N. A. Hill and K. B. Whaley (1994). J. Chem. Phys. 100, (4), 2831.

    Article  CAS  Google Scholar 

  41. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi (2000). Phys. Rev. B 61, R13349.

    Article  CAS  Google Scholar 

  42. R. G. Xie, U. Kolb, J. X. Li, T. Bashe, and A. Mews (2005). J. Am. Chem. Soc. 127, 7480.

    Article  CAS  Google Scholar 

  43. S. J. Clarke, C. A. Hollmann, F. A. Aldaye, and J. L. Nadeau (2008). Bioconj. Chem. 19, 562.

    Article  CAS  Google Scholar 

  44. M. A. Schreuder, J. R. McBride, A. D. Dukes III, J. A. Sammons, and S. J. Rosenthal (2009). J. Phys. Chem. C 113, 8169.

    Article  CAS  Google Scholar 

  45. A. Henglein (1993). J. Phys. Chem. 97, 5457.

    Article  CAS  Google Scholar 

  46. C. F. Landes, M. Braun, and M. A. El-Sayed (2001). J. Phys. Chem. B 105, 10554.

    Article  CAS  Google Scholar 

  47. B. P. Aryal and D. E. Benson (2006). J. Am. Chem. Soc. 128, 15986.

    Article  CAS  Google Scholar 

  48. J. G. Liang, S. S. Zhang, X. P. Ai, X. H. Ji, and Z. K. He (2005). Spectrochim Acta A 61, 2974.

    Article  CAS  Google Scholar 

  49. D. R. Baker and P. V. Kamat (2010). Langmuir 26, (13), 11272.

    Article  CAS  Google Scholar 

  50. M. A. Caldwell, A. E. Albers, S. C. Levy, T. E. Pick, B. E. Cohen, B. A. Helms, and D. J. Milliron (2011). Chem. Commun. 47, 556.

    Article  CAS  Google Scholar 

  51. Claridge, S., Castleman Jr, A., Khanna, S., Murray, C.B., Sen, A., Weiss, P.S.: Cluster-assembled materials. Acs Nano (2009).

  52. P. D. Cozzoli, T. Pellegrino, and L. Manna (2006). Chem. Soc. Rev. 35, 1195.

    Article  CAS  Google Scholar 

  53. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, and V. I. Klimov (2004). J. Phys. Chem. B 108, 5250.

    Article  CAS  Google Scholar 

  54. V. M. Huxter and G. Scholes (2009). J. Nanophoton. 3, (1), 032504. doi:10.1117/1.3276902.

    Article  CAS  Google Scholar 

  55. A. M. Smith and S. Nie (2009). Acc. Chem. Res. 43, 190.

    Article  CAS  Google Scholar 

  56. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko (2009). Chem. Rev. 110, 389.

    Article  CAS  Google Scholar 

  57. Y. Yin and A. P. Alivisatos (2004). Nature 437, 664.

    Article  CAS  Google Scholar 

  58. A. Wolcott, R. Fitzmorris, O. Muzaffery, and J. Z. Zhang (2010). Chem. Mater. 22, 2814.

    Article  CAS  Google Scholar 

  59. F. Wang, R. Tang, J. Kao, S. D. Dingman, and W. E. Buhro (2009). J. Am. Chem. Soc. 131, 4983.

    Article  CAS  Google Scholar 

  60. A. Cros-Gagneux, F. Delpech, C. Nayral, A. Cornejo, Y. Coppel, and B. Chaudret (2010). J. Am. Chem. Soc. 132, 18147.

    Article  CAS  Google Scholar 

  61. M. D. Donakowski, J. M. Godbe, R. Sknepnek, K. E. Knowles, M. O. de la Cruz, and E. A. Weiss (2010). J. Phys. Chem. C 114, 22526.

    Article  CAS  Google Scholar 

  62. A. M. Munro, I. Jen-La Plante, M. S. Ng, and D. S. Ginger (2007). J. Phys. Chem. C 111, 6220.

    Article  CAS  Google Scholar 

  63. I. Moreels, J. C. Martins, and Z. Hens (2006). ChemPhysChem 7, 1028.

    Article  CAS  Google Scholar 

  64. X. Ji, D. Copenhaver, C. Sichmeller, and X. Peng (2008). J. Am. Chem. Soc. 130, 5726.

    Article  CAS  Google Scholar 

  65. C. Bullen and P. Mulvaney (2006). Langmuir 22, 3007.

    Article  CAS  Google Scholar 

  66. B. Fritzinger, R. Capek, K. Lambert, J. C. Martins, and Z. Hens (2010). J. Am. Chem. Soc. 132, 10195.

    Article  CAS  Google Scholar 

  67. R. Gomes, A. Hassinen, A. Szczygiel, Q. Zhao, A. Vantomme, J. C. Martins, and Z. Hens (2011). J. Phys. Chem. Lett. 2, 145.

    Article  CAS  Google Scholar 

  68. Z. J. Jiang and D. F. Kelley (2010). ACS Nano 4, 1561.

    Article  CAS  Google Scholar 

  69. A. Dukes III, J. R. McBride, and S. J. Rosenthal (2010). Chem. Mater. 22, 6402.

    Article  CAS  Google Scholar 

  70. F. S. Riehle, R. Bienert, R. Thomann, G. A. Urban, and M. Kruger (2009). Nano Lett 9, 514.

    Article  CAS  Google Scholar 

  71. J. Huang, M. V. Kovalenko, and D. V. Talapin (2010). J. Am. Chem. Soc. 132, 15866.

    Article  CAS  Google Scholar 

  72. W. W. Yu, Y. A. Wang, and X. G. Peng (2003). Chem. Mater. 15, (22), 4300.

    Article  CAS  Google Scholar 

  73. J. T. Hu, L. W. Wang, L. S. Li, W. D. Yang, and A. P. Alivisatos (2002). J. Phys. Chem. B 106, (10), 2447.

    Article  CAS  Google Scholar 

  74. L. Manna, L. W. Wang, R. Cingolani, and A. P. Alivisatos (2005). J. Phys. Chem. B 109, (13), 6183.

    Article  CAS  Google Scholar 

  75. L. W. Wang, M. Califano, A. Zunger, and A. Franceschetti (2003). Phys. Rev. Lett. 91, (5), 056404.

    Article  CAS  Google Scholar 

  76. L. W. Wang and A. Zunger (1995). Phys. Rev. B 51, (24), 17398.

    Article  CAS  Google Scholar 

  77. L. W. Wang and A. Zunger (1996). Phys. Rev. B 53, (15), 9579.

    Article  CAS  Google Scholar 

  78. L. Pizzagalli, G. Galli, J. E. Klepeis, and F. Gygi (2001). Phys. Rev. B 63, 16.

    Article  CAS  Google Scholar 

  79. A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, G. Manna, and A. P. Alivisatos (2004). Nano Lett. 4, (12), 2361.

    Article  CAS  Google Scholar 

  80. A. Puzder, A. J. Wlliamson, F. Gygi, and G. Galli (2004). Phys. Rev. Lett. 92, 217401.

    Article  CAS  Google Scholar 

  81. A. Puzder, A. J. Williamson, F. Gygi, and G. Galli (2003). Phys. Rev. Lett. 91, 037401.

    Article  CAS  Google Scholar 

  82. K. Leung and K. B. Whaley (1999). J. Chem. Phys. 110, (22), 11012.

    Article  CAS  Google Scholar 

  83. H. Haug and S. W. Kock Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).

    Google Scholar 

  84. A. Zunger (2001). Phys. Stat. Sol. (b) 224, 727.

    Article  CAS  Google Scholar 

  85. V. S. Gurin (1994). J. Phys. 6, (42), 8691.

    CAS  Google Scholar 

  86. J. Robles, O. Mayorga, T. Lee, and D. Diaz (1999). Nanostruct. Mater. 11, 283.

    Article  CAS  Google Scholar 

  87. K. Toth and T. A. Pakkanen (1993). J. Comput. Chem. 14, 667.

    Article  CAS  Google Scholar 

  88. P. Deglmann, R. Ahlrichs, and K. Tsereteli (2002). J. Chem. Phys. 116, (4), 1585.

    Article  CAS  Google Scholar 

  89. J. Frenzel, J. O. Joswig, P. Sarkar, G. Seifert, and M. Springborg (2005). Eur. J. Inorg. Chem. 36, 3585.

    Article  CAS  Google Scholar 

  90. D. Porezag, T. Frauenheim, T. Kohler, G. Seifert, and R. Kaschner (1995). Phys. Rev. B 51, 12947.

    Article  CAS  Google Scholar 

  91. T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai (2002). J. Phys. 14, 3015.

    CAS  Google Scholar 

  92. J. M. Matxain, J. E. Flowler, and J. M. Ugalde (2000). Phys. Rev. A 61, 053201.

    Article  Google Scholar 

  93. M. C. Troparevsky and J. R. Chelikowsky (2001). J. Chem. Phys. 114, (2), 943.

    Article  CAS  Google Scholar 

  94. J. O. Joswig, M. Springborg, and G. Seifert (2000). J. Phys. Chem. B 104, 2617.

    Article  CAS  Google Scholar 

  95. T. Rabini, B. Hetényi, and B. Berne (1999). J. Chem. Phys. 110, 5355.

    Article  Google Scholar 

  96. J. R. Sachleben, V. Colvin, L. Emsley, E. W. Wooten, and A. P. Alivisatos (1998). J. Phys. Chem. B 102, (50), 10117.

    Article  CAS  Google Scholar 

  97. D. J. Milliron, A. P. Alivisatos, C. Pitois, C. Edder, and J. M. J. Frechet (2003). Adv. Mater. 15, (1), 58.

    Article  CAS  Google Scholar 

  98. S. Pokrant and K. B. Whaley (1999). Eur. Phys. J. D 6, (2), 255.

    Article  CAS  Google Scholar 

  99. G. W. Bryant and W. Jaskolski (2005). J. Phys. Chem. B 109, 19650.

    Article  CAS  Google Scholar 

  100. M. Korkusinski, O. Voznyy, and P. Hawrylak (2010). Phys. Rev. B 82, 245304.

    Article  CAS  Google Scholar 

  101. A. Franceschetti and A. Zunger (2000). Appl. Phys. Lett. 76, (13), 1731.

    Article  CAS  Google Scholar 

  102. P. C. Chen and K. B. Whaley (2004). Phys. Rev. B 70, (4), 45311.

    Article  CAS  Google Scholar 

  103. L. Wang (2009). Energy Environ. Sci. 2, 944.

    Article  CAS  Google Scholar 

  104. P. Yang, S. Tretiak, A. Masunov, and S. Ivanov (2008). J. Chem. Phys. 129, 074709.

    Article  CAS  Google Scholar 

  105. S. Y. Chung, S. Lee, C. Liu, and D. Neuhauser (2009). J. Phys. Chem. B 113, 292.

    Article  CAS  Google Scholar 

  106. H. Chou, C. Tseng, K. Pillai, B. Hwang, and L. Y. Chen (2010). Nanoscale 2, 2679.

    Article  CAS  Google Scholar 

  107. J. Y. Rempel, B. L. Trout, M. G. Bawendi, and K. F. Jensen (2006). J. Phys. Chem. B 110, 18007.

    Article  CAS  Google Scholar 

  108. H. Liu (2009). J Phys. Chem. C 113, 3116.

    Article  CAS  Google Scholar 

  109. Y. B. Gu, K. Tan, and M. H. Lin (2010). J. Mol. Struct. 961, 62.

    CAS  Google Scholar 

  110. M. Zanella, A. Z. Abbasi, A. K. Schaper, and W. J. Parak (2010). J Phys. Chem. C 114, 6205.

    Article  CAS  Google Scholar 

  111. T. Inerbaev, A. Masunov, S. Khondaker, A. Dobrinescu, A. V. Plamada, and Y. Kawazoe (2009). J. Chem. Phys. 131, 044106.

    Article  CAS  Google Scholar 

  112. S. Kilina, S. Ivanov, and S. Tretiak (2009). J. Am. Chem. Soc. 131, 7717.

    Article  CAS  Google Scholar 

  113. H. Kim, S. Jang, S. Chung, S. Lee, Y. Lee, B. Kim, C. Liu, and D. Neuhauser (2009). J. Phys. Chem. C 114, 471.

    Google Scholar 

  114. K. Knowles, D. Tice, E. A. McArthur, G. C. Solomon, and E. A. Weiss (2009). J. Am. Chem. Soc. 132, 1041.

    Article  CAS  Google Scholar 

  115. C. Liu, S. Chung, S. Lee, S. Weiss, and D. Neuhauser (2009). J. Chem. Phys. 131, 174705.

    Article  CAS  Google Scholar 

  116. J. B. Sambur, S. C. Riha, D. Choi, and B. A. Parkinson (2010). Langmuir 26, 4839.

    Article  CAS  Google Scholar 

  117. P. Schapotschnikow, B. Hommersom, and T. J. H. Vlugt (2009). J. Phys. Chem. C 113, 12690.

    Article  CAS  Google Scholar 

  118. K. Nguyen, P. N. Day, and R. Pachter (2010). J. Phys. Chem. C 114, 16197.

    Article  CAS  Google Scholar 

  119. G. Pilania, T. Sadowski, and R. Ramprasad (2009). J. Phys. Chem. C 113, 1863.

    Article  CAS  Google Scholar 

  120. I. Csik, S. P. Russo, and P. Mulvaney (2008). J Phys. Chem. C 112, 20413.

    Article  CAS  Google Scholar 

  121. G. Nesher, L. Kronik, and J. Chelikowsky (2005). Phys. Rev. B 71, 3.

    Article  CAS  Google Scholar 

  122. J. Frenzel, J.-O. Joswig, and G. Seifert (2007). J. Phys. Chem. C 111, 10761.

    Article  CAS  Google Scholar 

  123. J. Schrier and L. W. Wang (2006). J. Phys. Chem. B 110, 11982.

    Article  CAS  Google Scholar 

  124. R. Jose, N. U. Zhanpeisov, H. Fukumura, Y. Baba, and M. Ishikawa (2006). J. Am. Chem. Soc. 128, 629.

    Article  CAS  Google Scholar 

  125. Frisch, M. J., G. W. Trucks, H. B. Schlegel et al., Gaussian 03 (Gaussian Inc., Wallingford, CT, 2004).

  126. Z. A. Peng and X. G. Peng (2002). J. Am. Chem. Soc. 124, (13), 3343.

    Article  CAS  Google Scholar 

  127. A. Kasuya, R. Sivamohan, Y. A. Barnakov, I. M. Dmitruck, T. Nirasawa, V. R. Romanyuk, V. Kumar, S. V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R. V. Belosludov, V. Sundararajan, and Y. Kawazoe (2004). Nat. Mater. 3, 99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PY acknowledges support from Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research) located at Pacific North-west National Laboratory and operated for the DOE by Battelle. ST acknowledges support of the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE). We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Tretiak, S. & Ivanov, S. Influence of Surfactants and Charges on CdSe Quantum Dots. J Clust Sci 22, 405–431 (2011). https://doi.org/10.1007/s10876-011-0398-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0398-y

Keywords

Navigation