Skip to main content

Advertisement

Log in

Phenotypic Variability in PRKCD: a Review of the Literature

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Protein kinase C δ (PKCδ) deficiency is a rare genetic disorder identified as a monogenic cause of systemic lupus erythematosus in 2013. Since the first cases were described, the phenotype has expanded to include children presenting with autoimmune lymphoproliferative syndrome—related syndromes and infection susceptibility similar to chronic granulomatous disease or combined immunodeficiency. We review the current published data regarding the pathophysiology, clinical presentation, investigation and management of PKCδ deficiency.

Methods

Literature review was performed using MEDLINE.

Results

Twenty cases have been described in the literature with significant heterogeneity.

Conclusion

The variation in clinical presentation delineates the broad and critical role of PKCδ in immune tolerance and effector functions against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Belot A, Kasher PR, Trotter EW, Foray AP, Debaud AL, Rice GI, et al. Protein Kinase Cδ Deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 2013;65(8):2161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salzer E, Santos-Valente E, Klaver S, Ban SA, Emminger W, Prengemann NK, et al. B-cell deficiency and severe autoimmunity caused by deficiency of protein kinase C δ. Blood. 2013;121(16):3112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuehn HS, Niemela JE, Rangel-Santos A, Zhang M, Pittaluga S, Stoddard JL, et al. Loss-of-function of the protein kinase C δ (PKCδ) causes a B-cell lymphoproliferative syndrome in humans. Blood. 2013;121(16):3117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huppi K, Siwarski D, Goodnight J, Mischak H. Assignment of the protein kinase C delta polypeptide gene (PRKCD) to human chromosome 3 and mouse chromosome 14. Genomics. 1994;19(1):161–2.

    Article  CAS  PubMed  Google Scholar 

  5. Duquesnes N, Lezoualc’h F, Crozatier B. PKC-delta and PKC-epsilon: foes of the same family or strangers? J Mol Cell Cardiol. 2011;51(5):665–73.

    Article  CAS  PubMed  Google Scholar 

  6. Salzer E, Santos-Valente E, Keller B, Warnatz K, Boztug K. Protein kinase C δ: a gatekeeper of immune homeostasis. J Clin Immunol. 2016;36(7):631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neehus AL, Moriya K, Nieto-Patlán A, Le Voyer T, Lévy R, Özen A, et al. Impaired respiratory burst contributes to infections in PKCδ-deficient patients. J Exp Med [Internet]. J Exp Med 2021;218(9):e20210501. https://doi.org/10.1084/jem.20210501

  8. Limnander A, Zikherman J, Lau T, Leitges M, Weiss A, Roose JP. Protein kinase Cδ promotes transitional B cell-negative selection and limits proximal B cell receptor signaling to enforce tolerance. Mol Cell Biol. 2014;34(8):1474–85.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guo B, Rothstein TL. A novel Lyn-protein kinase Cδ/ε-protein kinase D axis is activated in B cells by signalosome-independent alternate pathway BCR signaling. Eur J Immunol. 2013;43(6):1643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukao S, Haniuda K, Tamaki H, Kitamura D. Protein kinase Cδ is essential for the IgG response against T-cell-independent type 2 antigens and commensal bacteria. eLife. 2021;10:e72116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gorelik G, Sawalha AH, Patel D, Johnson K, Richardson B. T cell PKCδ kinase inactivation induces lupus-like autoimmunity in mice. Clin Immunol Orlando Fla. 2015;158(2):193–203.

    Article  CAS  Google Scholar 

  12. Gruber T, Barsig J, Pfeifhofer C, Ghaffari-Tabrizi N, Tinhofer I, Leitges M, et al. PKCdelta is involved in signal attenuation in CD3+ T cells. Immunol Lett. 2005;96(2):291–3.

    Article  CAS  PubMed  Google Scholar 

  13. Schwegmann A, Guler R, Cutler AJ, Arendse B, Horsnell WGC, Flemming A, et al. Protein kinase C δ is essential for optimal macrophage-mediated phagosomal containment of Listeria monocytogenes. Proc Natl Acad Sci. 2007;104(41):16251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Contreras X, Mzoughi O, Gaston F, Peterlin MB, Bahraoui E. Protein kinase C-delta regulates HIV-1 replication at an early post-entry step in macrophages. Retrovirology. 2012;9(1):37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li X, Cullere X, Nishi H, Saggu G, Durand E, Mansour MK, et al. PKC-δ activation in neutrophils promotes fungal clearance. J Leukoc Biol. 2016;100(3):581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sheats MK, Sung EJ, Adler KB, Jones SL. In vitro neutrophil migration requires protein kinase c-delta (δ-PKC) mediated MARCKS (myristoylated alanine rich C-kinase substrate) phosphorylation. Inflammation. 2015;38(3):1126–41.

    Article  CAS  PubMed  Google Scholar 

  17. Mecklenbräuker I, Saijo K, Zheng NY, Leitges M, Tarakhovsky A. Protein kinase Cdelta controls self-antigen-induced B-cell tolerance. Nature. 2002;416(6883):860–5.

    Article  PubMed  Google Scholar 

  18. Moreews M, Mathieu AL, Pouxvielh K, Reuschlé Q, Drouillard A, Dessay P, et al. mTOR activation underlies enhanced B cell proliferation and autoimmunity in PrkcdG510S/G510S mice. J Immunol. 2023;210(9):1209–21.

    Article  CAS  PubMed  Google Scholar 

  19. Yanase N, Hayashida M, Kanetaka-Naka Y, Hoshika A, Mizuguchi J. PKC-δ mediates interferon-α-induced apoptosis through c-Jun NH2-terminal kinase activation. BMC Cell Biol. 2012;21(13):7.

    Article  Google Scholar 

  20. Yoshida K, Miki Y, Kufe D. Activation of SAPK/JNK signaling by protein kinase Cdelta in response to DNA damage. J Biol Chem. 2002;277(50):48372–8.

    Article  CAS  PubMed  Google Scholar 

  21. Yang H, Hu Z, Zhang J, Lowire DB, Liu TF, Fan XY, et al. Disseminated BCG disease with defective immune metabolism caused by protein kinase C delta deficiency. J Allergy Clin Immunol Pract. 2022;S2213–2198(22):00865.

    Google Scholar 

  22. Neehus AL, Tuano K, Le Voyer T, Nandiwada SL, Murthy K, Puel A, et al. Chronic granulomatous disease-like presentation of a child with autosomal recessive PKCδ deficiency. J Clin Immunol. 2022;42(6):1244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kiykim A, Ogulur I, Baris S, Salzer E, Karakoc-Aydiner E, Ozen AO, et al. Potentially beneficiaSl effect of hydroxychloroquine in a patient with a novel mutation in protein kinase Cδ deficiency. J Clin Immunol. 2015;35(6):523–6.

    Article  PubMed  Google Scholar 

  24. Kuehn HS, Niemela JE, Rangel-Santos A, Zhang M, Pittaluga S, Stoddard JL, et al. Loss-of-function of the protein kinase C δ (PKCδ) causes a B-cell lymphoproliferative syndrome in humans. Blood. 2013;121(16):3117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gu H, Chen Z, Ma J, Wang J, Zhang R, Wu R, et al. Sirolimus is effective in autoimmune lymphoproliferative syndrome-type III: a pedigree case report with homozygous variation PRKCD. Int J Immunopathol Pharmacol. 2021;35:20587384211025936.

    Article  Google Scholar 

  26. Nanthapisal S, Omoyinmi E, Murphy C, Standing A, Eisenhut M, Eleftheriou D, et al. Early-onset juvenile SLE associated with a novel mutation in protein kinase C δ. Pediatrics. 2017;139(1):e20160781. https://doi.org/10.1542/peds.2016-0781

  27. Lei L, Muhammad S, Al-Obaidi M, Sebire N, Cheng IL, Eleftheriou D, et al. Successful use of ofatumumab in two cases of early-onset juvenile SLE with thrombocytopenia caused by a mutation in protein kinase C δ. Pediatr Rheumatol Online J. 2018;16(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharifinejad N, Azizi G, Behniafard N, Zaki-Dizaji M, Jamee M, Yazdani R, et al. Protein kinase C-delta defect in autoimmune lymphoproliferative syndrome-like disease: first case from the National Iranian Registry and review of the literature. Immunol Invest. 2020;13:1–12.

    Google Scholar 

  29. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21.

    Article  CAS  PubMed  Google Scholar 

  30. Wahren-Herlenius M, Dörner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet Lond Engl. 2013;382(9894):819–31.

    Article  CAS  Google Scholar 

  31. Roderick MR, Jefferson L, Renton W, Belot A, PRKCD Consortium. Compound heterozygous mutations in PRKCD associated with early-onset lupus and severe and invasive infections in siblings. J Clin Immunol. 2023;43(4):703-705. https://doi.org/10.1007/s10875-022-01416-0

  32. Gorelik G, Fang JY, Wu A, Sawalha AH, Richardson B. 2007 Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol Baltim Md. 1950;179(8):5553–63.

    Google Scholar 

  33. Rieux-Laucat F, Magérus-Chatinet A, Neven B. The autoimmune lymphoproliferative syndrome with defective FAS or FAS-ligand functions. J Clin Immunol. 2018;38(5):558–68.

    Article  CAS  PubMed  Google Scholar 

  34. Chuang SS, Lee JK, Mathew PA. Protein kinase C is involved in 2B4 (CD244)-mediated cytotoxicity and AP-1 activation in natural killer cells. Immunology. 2003;109(3):432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LJ and MR performed the literature review and initial drafts. All authors significantly contributed to this manuscript by collecting and analysing data, preparing and editing the manuscript.

Corresponding authors

Correspondence to Lucy Jefferson, Alexandre Belot or Marion Ruth Roderick.

Ethics declarations

Ethical Approval

No ethics approval was required for this review.

Consent for Publication

As a review of the available literature, no consent was acquired for this publication. The authors have consent from one kindred whose clinical data is currently pending publication.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The following disclosures are declared but do not directly relate to the work presented herein. SJ has received support for conferences, speaker, advisory boards, trials, data and safety monitoring boards, and projects with CSL Behring, Takeda, Swedish Orphan Biovitrum, Biotest, Binding Site, Grifols, BPL, Octapharma, LFB, Pharming, GSK, Weatherden, Zarodex, Sanofi, and UCB Pharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jefferson, L., Ramanan, A.V., Jolles, S. et al. Phenotypic Variability in PRKCD: a Review of the Literature. J Clin Immunol 43, 1692–1705 (2023). https://doi.org/10.1007/s10875-023-01579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-023-01579-4

Keywords

Navigation