Skip to main content

Advertisement

Log in

Decreased Myocardial Expression of Dystrophin and Titin mRNA and Protein in Dilated Cardiomyopathy: Possibly an Adverse Effect of TNF-α

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background and aims

While the molecular basis of dilated cardiomyopathy (DCM) remains uncertain, concrete evidence is emerging that sarcomeric and cytoskeleton gene expression of myocardium isolated from failing versus non-failing patients differ dramatically. The central aim to this work was to find out the possible role of dystrophin and titin along with the TNF-α in the pathogenesis of cardiomyopathy.

Patients and methods

mRNA levels and protein expression of a cytoskeletal protein, dystrophin and a sarcomeric protein, titin in endomyocardial biopsies of DCM patients were examined using RT-PCR and immunohistochemistry, respectively. Further, we examined the effect of TNF-α on myocardial expression of titin and dystrophin in vitro in rat cardiac myoblast cell line (H9c2).

Results

We observed significantly decreased mRNA and protein levels of dystrophin and titin in endomyocardial biopsy of DCM patients as compared to control group. The decreased levels of these proteins correlated with the severity of the disease. Plasma levels of both TNF-α and its soluble receptors TNFR1 and TNFR2 were found to be significantly higher in patients as compared to control group. Treatment of H9c2 cells with TNF-α resulted in a dose- and time-dependent decrease in mRNA levels of dystrophin and titin. Pretreatment of these cells with MG132, an inhibitor of nuclear factor kappa B (NF-κB) pathway, abolished TNF-α-induced reduction in mRNA levels of dystrophin and titin.

Conclusion

Our results suggest that reduced expression of dystrophin and titin is associated with the pathophysiology of DCM, and TNF-α may modulate the expression of these proteins via NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCM:

Dilated cardiomyopathy

HF:

heart failure

CHF:

chronic heart failure

TNF-α:

tumor necrosis factor-alpha

TNFR:

tumor necrosis factor receptor

IL-6:

interleukin 6

IL-6R:

IL-6 receptor

NF-κB:

nuclear factor kappa B

ASD:

atrial septal defect

VSD:

ventricular septal defect

LVEF:

left ventricular ejection fraction

LVED:

left ventricular end diastolic

NYHA:

New York Heart Association

References

  1. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation. 1996;93:841–2.

    CAS  PubMed  Google Scholar 

  2. Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol. 1998;10:131–9.

    Article  CAS  PubMed  Google Scholar 

  3. Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest. 1998;101:2415–26.

    Article  CAS  PubMed  Google Scholar 

  4. Chien KR. Stress pathways and heart failure. Cell. 1999;98:555–8.

    Article  CAS  PubMed  Google Scholar 

  5. Towbin JA. Pediatric myocardial disease. Pediatr Clin North Am. 1999;46:289–312.

    Article  CAS  PubMed  Google Scholar 

  6. McNally E, Allikian M, Wheeler MT, Mislow JM, Hevdemann A. Cytoskeletal defects in cardiomyopathy. J Mol Cell Cardiol. 2003;3:231–41.

    Article  Google Scholar 

  7. Vatta M, Stetson SJ, Jimenez S, Entman ML, Noon GP, Bowles NE, et al. Molecular normalization of dystrophin in the failing left and right ventricle of patients treated with either pulsatile or continuous flow-type ventricular assist devices. J Am Coll Cardiol. 2004;43:811–7.

    Article  CAS  PubMed  Google Scholar 

  8. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol. 2000;32:2151–62.

    Article  CAS  PubMed  Google Scholar 

  9. Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, et al. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res. 2004;95:708–16.

    Article  CAS  PubMed  Google Scholar 

  10. Von Haehling S, Schefold JC, Lainscak M, Doehner W, Anker SD. Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail Clin. 2009;5(4):549–60.

    Article  Google Scholar 

  11. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, et al. umor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93:704–11.

    CAS  PubMed  Google Scholar 

  12. Ahmad S, Otaal PS, Rai TS, Bahl A, Saikia UN, Manoj RK, et al. Circulating proinflammatory cytokines and N-terminal pro-brain natriuretic peptide significantly decrease with recovery of left ventricular function in patients with dilated cardiomyopathy. Mol Cell Biochem. 2009;324:139–45.

    Article  CAS  PubMed  Google Scholar 

  13. Paulus WJ. How are cytokines activated in heart failure? Eur J Heart Fail. 1999;1:309–12.

    Article  CAS  PubMed  Google Scholar 

  14. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296:1634–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, et al. Dilated cardiomyopathy in transgenic mice with cardiac specific overexpression of tumor necrosis factor alpha. Circ Res. 1997;81:627–35.

    CAS  PubMed  Google Scholar 

  16. Kubota T, Bounoutas GS, Miyagishima M, Kadokami T, Sanders VJ, Bruton C, et al. Soluble tumor necrosis factor receptor abrogates myocardial inflammation but not hypertrophy in cytokine-induced cardiomyopathy. Circulation. 2000;101:2518–25.

    CAS  PubMed  Google Scholar 

  17. Taghli-Lamallem O, Akasaka T, Hogg G, Nudel U, Yaffe D, Chamberlain JS, et al. Dystrophin deficiency in Drosophila reduces lifespan and causes a dilated cardiomyopathy phenotype. Aging Cell. 2008;7:237–49.

    Article  CAS  PubMed  Google Scholar 

  18. Vatta M, Stetson SJ, Perez-Verdia A, Entman ML, Noon GP, Torre-Amione G, et al. Molecular remodeling of dystrophin in patients with end-stage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet. 2002;359:936–41.

    Article  CAS  PubMed  Google Scholar 

  19. Morano I, Hädicke K, Grom S, Koch A, Schwinger RH, Böhm M, et al. Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol. 1994;26:361–8.

    Article  CAS  PubMed  Google Scholar 

  20. Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation. 1991;83:504–14.

    CAS  PubMed  Google Scholar 

  21. Hein S, Scholz D, Fujitani N, Rennolet H, Brand T, friedl A, et al. Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol. 1994;26:1291–306.

    Article  CAS  PubMed  Google Scholar 

  22. Kelly RA, Smith TW. Cytokines and cardiac contractile function. Circulation. 1997;95:778–81.

    CAS  PubMed  Google Scholar 

  23. Aukrust P, Ueland T, Lien E, Bendtzen K, Müller F, Andreassen AK, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83:376–82.

    Article  CAS  PubMed  Google Scholar 

  24. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, et al. The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol. 2000;35:537–44.

    Article  CAS  PubMed  Google Scholar 

  25. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996;93:704–11.

    CAS  PubMed  Google Scholar 

  26. Kubota T, Miyagishima M, Alvarez RJ, Kormos R, Rosenblum WD, Demetris AJ, et al. Expression of proinflammatory cytokines in the failing human heart: comparison of recent-onset and end-stage congestive heart failure. J Heart Lung Transplant. 2000;19:819–24.

    Article  CAS  PubMed  Google Scholar 

  27. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science. 1992;257:387–9.

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor-a in the adult mammalian heart. J Clin Invest. 1993;92:2012–303.

    Article  Google Scholar 

  29. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, et al. Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Invest. 1996;98:2854–65.

    Article  CAS  PubMed  Google Scholar 

  30. Kawamura N, Kubota T, Kawano S, Monden Y, Feldman AM, Tsutsui H, et al. Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovasc Res. 2005;66:520–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Indian council of Medical Research, New Delhi, India and Postgraduate Institute of Medical Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Khullar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, S., Rai, T.S., Khullar, M. et al. Decreased Myocardial Expression of Dystrophin and Titin mRNA and Protein in Dilated Cardiomyopathy: Possibly an Adverse Effect of TNF-α. J Clin Immunol 30, 520–530 (2010). https://doi.org/10.1007/s10875-010-9388-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9388-3

Keywords

Navigation