Skip to main content
Log in

A one year study of functionalised medium-chain carboxylic acids in atmospheric particles at a rural site in Germany revealing seasonal trends and possible sources

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

This study presents a yearlong data set of 28 medium-chain functionalised carboxylic acids (C5 to C10) in atmospheric aerosol particles (PM10) from a German rural measurement station, which is analysed to obtain seasonal trends and evidences for possible sources of these rarely studied compounds. The analysed carboxylic acids were divided into four main groups: (I) functionalised aliphatic monocarboxylic acids, (II) functionalised aromatic monocarboxylic acids, (III) non-functionalised and functionalised aliphatic dicarboxylic acids, and (IV) aromatic dicarboxylic acids. A concentration maximum in summer was observed for aliphatic carboxylic acids, indicating mainly photochemical formation processes. For example, the highest mean summer concentrations were observed for 4-oxopentanoic acid (4.1 ng m−3) in group I and for adipic acid (10.3 ng m−3) in group III. In contrast, a concentration maximum in winter occurred for aromatic carboxylic acids, hinting at anthropogenic sources like residential heating. The highest mean winter concentrations were observed for 4-hydroxybenzoic acid (2.4 ng m−3) in group II and for phthalic acid (5.8 ng m−3) in group IV. For the annual mean concentrations, highest values were found for adipic acid and 4-oxopimelic acids with 7.8 ng m−3 and 6.1 ng m−3, respectively. The concentrations of oxodicarboxylic acids exceeded those of their corresponding unsubstituted form. Accordingly, straight-chain dicarboxylic acids might act as precursor compounds for their respective oxygenated forms. Similarly, unsubstituted monocarboxylic acids are possible precursors for functionalised aliphatic monocarboxylic acids. The present study contributes to the speciation of organic content on a molecular level of atmospheric particles, as well as giving hints for possible sources for these carboxylic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alves, C.A., Gonçalves, C., Evtyugina, M., Pio, C.A., Mirante, F., Puxbaum, H.: Particulate organic compounds emitted from experimental wildland fires in a Mediterranean ecosystem. Atmos. Environ. 44, 2750–2759 (2010). https://doi.org/10.1016/j.atmosenv.2010.04.029

    Article  Google Scholar 

  • Bikkina, S., Kawamura, K., Miyazaki, Y.: Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pacific: sources and formation pathways. J. Geophys. Res. Atmos. 120, 5010–5035 (2015). https://doi.org/10.1002/2014JD022235

    Article  Google Scholar 

  • Boreddy, S.K.R., Kawamura, K., Tachibana, E.: Long-term (2001–2013) observations of water-soluble dicarboxylic acids and related compounds over the western North Pacific: trends, seasonality and source apportionment. Sci. Rep. 7, (2017a)(a). doi:https://doi.org/10.1038/s41598-017-08745-w, 8518

  • Boreddy, S.K.R., Mochizuki, T., Kawamura, K., Bikkina, S., Sarin, M.M.: Homologous series of low molecular weight (C 1 -C 10 ) monocarboxylic acids, benzoic acid and hydroxyacids in fine-mode (PM 2.5 ) aerosols over the bay of Bengal: influence of heterogeneity in air masses and formation pathways. Atmos. Environ. 167, 170–180 (2017b)(b). doi:https://doi.org/10.1016/j.atmosenv.2017.08.008

  • Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S.K., Sherwood, S., Stevens, B., Zhang, X.Y.: Clouds and aerosols. In: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge and New York (2013)

  • Cao, F., Zhang, S.-C., Kawamura, K., Liu, X., Yang, C., Xu, Z., Fan, M., Zhang, W., Bao, M., Chang, Y., Song, W., Liu, S., Lee, X., Li, J., Zhang, G., Zhang, Y.-L.: Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environ. Pollut. 231, 654–662 (2017). https://doi.org/10.1016/j.envpol.2017.08.045

    Article  Google Scholar 

  • Chan, A.W.H., Kautzman, K.E., Chhabra, P.S., Surratt, J.D., Chan, M.N., Crounse, J.D., Wennberg, P.O., Flagan, R.C., Seinfeld, J.H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmos. Chem. Phys. 9, 3049–3060 (2009). https://doi.org/10.5194/acp-9-3049-2009

    Article  Google Scholar 

  • Chebbi, A., Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 30, 4233–4249 (1996). https://doi.org/10.1016/1352-2310(96)00102-1

    Article  Google Scholar 

  • Dabek-Zlotorzynska, E., Aranda-Rodriguez, R., Graham, L.: Capillary electrophoresis determinative and GC-MS confirmatory method for water-soluble organic acids in airborne particulate matter and vehicle emission. J. Sep. Sci. 28, 1520–1528 (2005). https://doi.org/10.1002/jssc.200400053

    Article  Google Scholar 

  • Deshmukh, D.K., Kawamura, K., Deb, M.K.: Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from Central India: sources and formation processes. Chemosphere. 161, 27–42 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.107

    Article  Google Scholar 

  • Fruekilde, P., Hjorth, J., Jensen, N.R., Kotzias, D., Larsen, B.: Ozonolysis at vegetation surfaces: a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere. Atmos. Environ. 32, 1893–1902 (1998). https://doi.org/10.1016/S1352-2310(97)00485-8

    Article  Google Scholar 

  • Fu, P., Kawamura, K.: Diurnal variations of polar organic tracers in summer forest aerosols: a case study of a Quercus and Picea mixed forest in Hokkaido, Japan. Geochem. J. 45, 297–308 (2011). https://doi.org/10.2343/geochemj.1.0123

    Article  Google Scholar 

  • Glasius, M., Lahaniati, M., Calogirou, A., Di Bella, D., Jensen, N.R., Hjorth, J., Kotzias, D., Larsen, B.R.: Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone. Environ. Sci. Technol. 34, 1001–1010 (2000). https://doi.org/10.1021/es990445r

    Article  Google Scholar 

  • Gowda, D., Kawamura, K., Tachibana, E.: Identification of hydroxy- and keto-dicarboxylic acids in remote marine aerosols using gas chromatography/quadruple and time-of-flight mass spectrometry: identification of hydroxy- and keto-dicarboxylic acids by GC/TOFMS. Rapid Commun. Mass Spectrom. 30, 992–1000 (2016). https://doi.org/10.1002/rcm.7527

    Article  Google Scholar 

  • Graham, B.: Water-soluble organic compounds in biomass burning aerosols over Amazonia1. Characterization by NMR and GC-MS. J. Geophys. Res. 107, (2002). https://doi.org/10.1029/2001JD000336

  • Hamilton, J., Webb, P., Lewis, A., Reviejo, M.: Quantifying small molecules in secondary organic aerosol formed during the photo-oxidation of toluene with hydroxyl radicals. Atmos. Environ. 39, 7263–7275 (2005). https://doi.org/10.1016/j.atmosenv.2005.09.006

    Article  Google Scholar 

  • Harrison, M.A.J., Barra, S., Borghesi, D., Vione, D., Arsene, C., Iulian Olariu, R.: Nitrated phenols in the atmosphere: a review. Atmos. Environ. 39, 231–248 (2005). https://doi.org/10.1016/j.atmosenv.2004.09.044

    Article  Google Scholar 

  • Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H.: Mechanism for the formation of gaseous and particulate products from ozone-cycloalkene reactions in air. Environ. Sci. Technol. 21, 52–57 (1987). https://doi.org/10.1021/es00155a005

    Article  Google Scholar 

  • He, L.-Y., Hu, M., Huang, X.-F., Yu, B.-D., Zhang, Y.-H., Liu, D.-Q.: Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmos. Environ. 38, 6557–6564 (2004). https://doi.org/10.1016/j.atmosenv.2004.08.034

    Article  Google Scholar 

  • Herrmann, H., Tilgner, A., Barzaghi, P., Majdik, Z., Gligorovski, S., Poulain, L., Monod, A.: Towards a more detailed description of tropospheric aqueous phase organic chemistry: CAPRAM 3.0. Atmos. Environ. 39, 4351–4363 (2005). https://doi.org/10.1016/j.atmosenv.2005.02.016

    Article  Google Scholar 

  • Herrmann, H., Schaefer, T., Tilgner, A., Styler, S.A., Weller, C., Teich, M., Otto, T.: Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. Chem. Rev. 115, 4259–4334 (2015). https://doi.org/10.1021/cr500447k

    Article  Google Scholar 

  • Ho, K.F., Cao, J.J., Lee, S.C., Kawamura, K., Zhang, R.J., Chow, J.C., Watson, J.G.: Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. J. Geophys. Res. 112, (2007). https://doi.org/10.1029/2006JD008011

  • Ho, K.F., Lee, S.C., Ho, S.S.H., Kawamura, K., Tachibana, E., Cheng, Y., Zhu, T.: Dicarboxylic acids, ketocarboxylic acids, α -dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 campaign of air quality research in Beijing (CAREBeijing-2006). J. Geophys. Res. 115, (2010). https://doi.org/10.1029/2009JD013304

  • Iinuma, Y., Brüggemann, E., Gnauk, T., Müller, K., Andreae, M.O., Helas, G., Parmar, R., Herrmann, H.: Source characterization of biomass burning particles: the combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. 112, (2007). https://doi.org/10.1029/2006JD007120

  • Jacob, D.: Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 34, 2131–2159 (2000). https://doi.org/10.1016/S1352-2310(99)00462-8

    Article  Google Scholar 

  • Kawamura, K., Bikkina, S.: A review of dicarboxylic acids and related compounds in atmospheric aerosols: molecular distributions, sources and transformation. Atmos. Res. 170, 140–160 (2016). https://doi.org/10.1016/j.atmosres.2015.11.018

    Article  Google Scholar 

  • Kawamura, K., Gagosian, R.B.: Mid-chain ketocarboxylic acids in the remote marine atmosphere: distribution patterns and possible formation mechanisms. J. Atmos. Chem. 11, 107–122 (1990). https://doi.org/10.1007/BF00053670

    Article  Google Scholar 

  • Kawamura, K., Ikushima, K.: Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environ. Sci. Technol. 27, 2227–2235 (1993)

    Article  Google Scholar 

  • Kawamura, K., Sakaguchi, F.: Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. J. Geophys. Res. Atmos. 104, 3501–3509 (1999). https://doi.org/10.1029/1998JD100041

    Article  Google Scholar 

  • Kawamura, K., Steinberg, S., Kaplan, I.R.: Homologous series of C1-C10 monocarboxylic acids and C1-C6 carbonyls in Los Angeles air and motor vehicle exhausts. Atmos. Environ. 34, 4175–419117 (2000)

    Article  Google Scholar 

  • Kawamura, K., Imai, Y., Barrie, L.: Photochemical production and loss of organic acids in high Arctic aerosols during long-range transport and polar sunrise ozone depletion events. Atmos. Environ. 39, 599–614 (2005). https://doi.org/10.1016/j.atmosenv.2004.10.020

    Article  Google Scholar 

  • Kawamura, K., Kasukabe, H., Barrie, L.A.: Secondary formation of water-soluble organic acids and α -dicarbonyls and their contributions to total carbon and water-soluble organic carbon: photochemical aging of organic aerosols in the Arctic spring. J. Geophys. Res. 115, (2010). https://doi.org/10.1029/2010JD014299

  • Kawamura, K., Hoque, M.M.M., Bates, T.S., Quinn, P.K.: Molecular distributions and isotopic compositions of organic aerosols over the western North Atlantic: dicarboxylic acids, related compounds, sugars, and secondary organic aerosol tracers. Org. Geochem. 113, 229–238 (2017). https://doi.org/10.1016/j.orggeochem.2017.08.007

    Article  Google Scholar 

  • Kitanovski, Z., Grgić, I., Veber, M.: Characterization of carboxylic acids in atmospheric aerosols using hydrophilic interaction liquid chromatography tandem mass spectrometry. Journal of Chromatography A 1218(28), 4417–4425 (2011).

  • Kitanovski, Z., Grgić, I., Vermeylen, R., Claeys, M., Maenhaut, W.: Liquid chromatography tandem mass spectrometry method for characterization of monoaromatic nitro-compounds in atmospheric particulate matter. J. Chromatogr. A. 1268, 35–43 (2012). https://doi.org/10.1016/j.chroma.2012.10.021

    Article  Google Scholar 

  • Kristensen, K., Bilde, M., Aalto, P.P., Petäjä, T., Glasius, M.: Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: gas/particle distribution and possible sampling artifacts. Atmos. Environ. 130, 36–53 (2016). https://doi.org/10.1016/j.atmosenv.2015.10.046

    Article  Google Scholar 

  • Kubátová, A., Vermeylen, R., Claeys, M., Cafmeyer, J., Maenhaut, W.: Organic compounds in urban aerosols from gent, Belgium: characterization, sources, and seasonal differences. J. Geophys. Res. Atmos. 107, ICC 5-1-ICC 5-12, ICC 5-1–ICC 5-12 (2002). https://doi.org/10.1029/2001JD000556

    Article  Google Scholar 

  • Kundu, S., Kawamura, K., Andreae, T.W., Hoffer, A., Andreae, M.O.: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers. Atmos. Chem. Phys. 17, 2209–2225 (2010). https://doi.org/10.5194/acp-10-2209-2010

    Article  Google Scholar 

  • Kunwar, B., Torii, K., Kawamura, K.: Springtime influences of Asian outflow and photochemistry on the distributions of diacids, oxoacids and α-dicarbonyls in the aerosols from the western North Pacific rim. Tellus B: Chemical and Physical Meteorology. 69, 1369341 (2017). https://doi.org/10.1080/16000889.2017.1369341

    Article  Google Scholar 

  • Li, Y., Yu, J.Z.: Simultaneous determination of mono- and dicarboxylic acids, ω-oxo-carboxylic acids, midchain ketocarboxylic acids, and aldehydes in atmospheric aerosol samples. Environ. Sci. Technol. 39, 7616–7624 (2005). https://doi.org/10.1021/es050896d

    Article  Google Scholar 

  • Limbeck, A., Puxbaum, H., Otter, L., Scholes, M.C.: Semivolatilebehavior of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA). Atmos. Environ. 35, 1853–1862 (2001). https://doi.org/10.1016/S1352-2310(00)00497-0

    Article  Google Scholar 

  • Limbeck, A., Kraxner, Y., Puxbaum, H.: Gas to particle distribution of low molecular weight dicarboxylic acids at two different sites in Central Europe (Austria). J. Aerosol Sci. 36, 991–1005 (2005). https://doi.org/10.1016/j.jaerosci.2004.11.013

    Article  Google Scholar 

  • Madronich, S., Flocke, S.: The role of solar radiation in atmospheric chemistry. In: Boule, P. (ed.) Environmental Photochemistry. The Handbook of Environmental Chemistry (Reactions and Processes), Vol 2 / 2L. Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/978-3-540-69044-3_1

    Google Scholar 

  • Matsunaga, S., Mochida, M., Kawamura, K.: High abundance of gaseous and particulate 4-oxopentanal in the forestal atmosphere. Chemosphere. 55, 1143–1147 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.004

    Article  Google Scholar 

  • Mochida, M., Kawabata, A., Kawamura, K., Hatsushika, H., Yamazaki, K.: Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. J. Geophys. Res. 108, (2003). https://doi.org/10.1029/2002JD002355

  • Narukawa, M.: Fine and coarse modes of dicarboxylic acids in the Arctic aerosols collected during the polar sunrise experiment 1997. J. Geophys. Res. 108, (2003). https://doi.org/10.1029/2003JD003646

  • Oros, D.R., Simoneit, B.R.: Identification and emission factors of molecular tracers in organic aerosols from biomass burning part 1. Temperate climate conifers. Appl. Geochem. 16, 1513–1544 (2001). https://doi.org/10.1016/S0883-2927(01)00021-X

    Article  Google Scholar 

  • Pavuluri, C.M., Kawamura, K., Mihalopoulos, N., Swaminathan, T.: Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls. Atmos. Chem. Phys. 15, 7999–8012 (2015). https://doi.org/10.5194/acp-15-7999-2015

    Article  Google Scholar 

  • Pietrogrande, M.C., Bacco, D., Visentin, M., Ferrari, S., Poluzzi, V.: Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaigns — part 1: low molecular weight carboxylic acids in cold seasons. Atmos. Environ. 86, 164–175 (2014). doi:https://doi.org/10.1016/j.atmosenv.2013.12.022van Pinxteren, D., Fomba, K.W., Spindler, G., Müller, K., Poulain, L., Iinuma, Y., Löschau, G., Hausmann, A., Herrmann, H.: Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000. Faraday Discuss. 189, 291–315 (2016). doi:https://doi.org/10.1039/C5FD00228A

  • Ray, J., McDow, S.R.: Dicarboxylic acid concentration trends and sampling artifacts. Atmos. Environ. 39, 7906–7919 (2005). https://doi.org/10.1016/j.atmosenv.2005.09.024

    Article  Google Scholar 

  • Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R.T.: Sources of fine organic aerosol. 5. Natural gas home appliances. Environ. Sci. Technol. 27, 2736–2744 (1993). https://doi.org/10.1021/es00049a012

    Article  Google Scholar 

  • Römpp, A., Winterhalter, R., Moortgat, G.K.: Oxodicarboxylic acids in atmospheric aerosol particles. Atmos. Environ. 40, 6846–6862 (2006). https://doi.org/10.1016/j.atmosenv.2006.05.053

    Article  Google Scholar 

  • Shakya, K.M., Griffin, R.J.: Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 44, 8134–8139 (2010). https://doi.org/10.1021/es1019417

    Article  Google Scholar 

  • Souza, S.: Low molecular weight carboxylic acids in an urban atmosphere: winter measurements in Sao Paulo City, Brazil. Atmos. Environ. 33, 2563–2574 (1999). https://doi.org/10.1016/S1352-2310(98)00383-5

    Article  Google Scholar 

  • Spindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., Herrmann, H.: A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmos. Environ. 44, 164–173 (2010). https://doi.org/10.1016/j.atmosenv.2009.10.015

    Article  Google Scholar 

  • Spindler, G., Grüner, A., Müller, K., Schlimper, S., Herrmann, H.: Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study at Melpitz -- influence of air mass inflow, weather conditions and season. J. Atmos. Chem. 70, 165–195 (2013). https://doi.org/10.1007/s10874-013-9263-8

    Article  Google Scholar 

  • Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 96, 2059–2077 (2015). https://doi.org/10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  • Stephanou, E.G., Stratlgakls, N.: Oxocarboxylic and a,w-dicarboxylic acids: Photooxidation products of biogenic unsaturated fatty acids present in urban aerosols. Environ. Sci. Technol. 27, 1403–1407 (1993). https://doi.org/10.1021/es00044a016

    Article  Google Scholar 

  • Stieger, B., Spindler, G., Fahlbusch, B., Müller, K., Grüner, A., Poulain, L., Thöni, L., Seitler, E., Wallasch, M., Herrmann, H.: Measurements of PM10 ions and trace gases with the online system MARGA at the research station Melpitz in Germany – a five-year study. J. Atmos. Chem. (2017). https://doi.org/10.1007/s10874-017-9361-0

  • Teich, M., van Pinxteren, D., Wang, M., Kecorius, S., Wang, Z., Müller, T., Močnik, G., Herrmann, H.: Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmos. Chem. Phys. 17, 1653–1672 (2017). https://doi.org/10.5194/acp-17-1653-2017

    Article  Google Scholar 

  • van Pinxteren, D., Herrmann, H.: Determination of functionalised carboxylic acids in atmospheric particles and cloud water using capillary electrophoresis/mass spectrometry. J. Chromatogr. A. 1171, 112–123 (2007). https://doi.org/10.1016/j.chroma.2007.09.021

    Article  Google Scholar 

  • van Pinxteren, D., Teich, M., Herrmann, H.: Hollow fibre liquid-phase microextraction of functionalised carboxylic acids from atmospheric particles combined with capillary electrophoresis/mass spectrometric analysis. J. Chromatogr. A. 1267, 178–188 (2012). https://doi.org/10.1016/j.chroma.2012.06.097

    Article  Google Scholar 

  • van Pinxteren, D., Neusüß, C., Herrmann, H.: On the abundance and source contributions of dicarboxylic acids in size-resolved aerosol particles at continental sites in Central Europe. Atmos. Chem. Phys. 14, 3913–3928 (2014). https://doi.org/10.5194/acp-14-3913-2014

    Article  Google Scholar 

  • van Pinxteren, D., Fomba, K.W., Spindler, G., Müller, K., Poulain, L., Iinuma, Y., Löschau, G., Hausmann, A., Herrmann, H.: Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000. Faraday Discuss. 189, 291–315 (2016). https://doi.org/10.1039/C5FD00228A

  • Yassaa, N., YoucefMeklati, B., Cecinato, A., Marino, F.: Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City area. Atmos. Environ. 35, 1843–1851 (2001). https://doi.org/10.1016/S1352-2310(00)00514-8

    Article  Google Scholar 

  • Yokouchi, Y., Ambe, Y.: Characterization of polar organics in airborne particulate matter. Atmos. Environ. (1967). 20, 1727–1734 (1986). https://doi.org/10.1016/0004-6981(86)90121-6

    Article  Google Scholar 

  • Yu, S.: Role of organic acids (formic, acetic, pyruvic and oxalic) in the formation of cloud condensation nuclei (CCN): a review. Atmos. Res. 53, 185–217 (2000). https://doi.org/10.1016/S0169-8095(00)00037-5

    Article  Google Scholar 

  • Yue, Z., Fraser, M.P.: Polar organic compounds measured in fine particulate matter during TexAQS 2000. Atmos. Environ. 38, 3253–3261 (2004). https://doi.org/10.1016/j.atmosenv.2004.03.014

    Article  Google Scholar 

  • Zhang, Y.Y., Müller, L., Winterhalter, R., Moortgat, G.K., Hoffmann, T., Pöschl, U.: Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. Atmos. Chem. Phys. 15, 7859–7873 (2010). https://doi.org/10.5194/acp-10-7859-2010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) under contract HE 3086/11-1. The authors would like to thank Gerald Spindler and Konrad Müller for providing data of OC and EC concentrations as well as concentrations of water-soluble ions, respectively. Moreover, we thank Laura Frank for language correction. The work of the technical staff in the laboratories of TROPOS is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Herrmann.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 576 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teich, M., van Pinxteren, D. & Herrmann, H. A one year study of functionalised medium-chain carboxylic acids in atmospheric particles at a rural site in Germany revealing seasonal trends and possible sources. J Atmos Chem 76, 115–132 (2019). https://doi.org/10.1007/s10874-019-09390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-019-09390-5

Keywords

Navigation