Skip to main content

Advertisement

Log in

Luzon strait mesoscale eddy characteristics in HYCOM reanalysis, simulation, and forecasts

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Luzon Strait and the northern South China Sea are regions of high mesoscale eddy activity. These transient eddies are important to the local circulation and for water mass transports. This work applies satellite altimeter observations and an ocean model reanalysis, simulation, and forecasts to evaluate the realism of these eddies and to determine the consistency of the properties with and without data assimilation. First, we perform a 13-year daily comparison between a HYbrid Coordinate Ocean Model (HYCOM) data-assimilative reanalysis (HYCOM-R), a HYCOM non-assimilative simulation (HYCOM-S), HYCOM forecasts (HYCOM-F) within the Earth System Prediction Capability (ESPC), and from the U.S. Navy’s operational ALtimeter Processing System (ALPS). We compared spatial and temporal mean physical characteristics with a focus on amplitude, radius, and eddy kinetic energy and find the most consistently higher-amplitude and higher-energy eddies in the HYCOM-R product, attributed to dynamical interpolation between the altimeter tracks. When eddies were compared between HYCOM-R and HYCOM-F, we find more similar eddy characteristics for anticyclonic eddies over cyclonic eddies. We find an increased number of low-amplitude forecast eddies present on the first day of each forecast that were still present on days 10, 20, and 30. In HYCOM-R, these smaller eddies dissipated before they did in the forecasts, leaving the larger, higher-energy eddies to dominate the characteristics of the eddy field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data avaiability

The location of each dataset is currently listed in the acknowledgements. The relevant sentences can be moved to a separate data availability statement.

References

  • Barton N, Metzger EJ, Reynolds CA, Ruston B, Rowley C, Smedstad OM, Ridout JA, Wallcraft A, Frolov S, Hogan P, Janiga MA (2021) The Navy’s earth system prediction capability: a new global coupled atmosphere-ocean-sea ice prediction system designed for daily to subseasonal forecasting. Earth Space Sci 8(4):e2020EA001199

    Article  Google Scholar 

  • Bleck R, Halliwell GR, Wallcraft AJ, Carroll S, Kelly K and Rushing K (2002) HYbrid Coordinate Ocean Model (HYCOM) user’s manual: Details of the numerical code. HYCOM, version 2. no. 01: 1-211

  • Chang R, Zhu R, Badger M, Hasager CB, Xing X, Jiang Y (2015) Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea. Remote Sens 7(1):467–487

    Article  Google Scholar 

  • Chassignet EP, Smith LT, Halliwell GR, Bleck R (2003) North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J Phys Oceanogr 33(12):504−2526

  • Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Hogan PJ, Wallcraft AJ, Baraille R, Bleck R (2007) The HYCOM (hybrid coordinate ocean model) data assimilative system. J Mar Syst 65(1–4):60–83

    Article  Google Scholar 

  • Chen G, Hou Y, Chu X (2011) Mesoscale eddies in the South China Sea: mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophys Res. https://doi.org/10.1029/2010jc006716

    Article  Google Scholar 

  • Chen G, Li Y, Xie Q, Wang D (2018) Origins of eddy kinetic energy in the Bay of Bengal. J Geophys Res 123(3):2097–2115

    Article  Google Scholar 

  • Cheng YH, Ho CR, Zheng Q, Qiu B, Hu J, Kuo NJ (2017) Statistical features of eddies approaching the Kuroshio east of Taiwan Island & Luzon Island. J Oceanogr 73(4):427–438. https://doi.org/10.1007/s10872-017-0411-7

    Article  Google Scholar 

  • Cummings JA (2005) Operational multivariate ocean data assimilation. Q J R Meteorol Soc 131(613):3583–3604

    Article  Google Scholar 

  • Cummings JA, Smedstad OM (2013) Variational data assimilation for the global ocean. Data assimilation for atmospheric, oceanic and hydrologic applications, vol II. Springer, Berlin, pp 303–343

    Google Scholar 

  • Feng B, Liu H, Lin P, Wang Q (2017) Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model. Acta Oceanol Sin 36(5):9–25

    Article  Google Scholar 

  • Gan J, Li H, Curchitser EN, Haidvogel DB (2005) Modeling South China Sea circulation: response to seasonal forcing regimes. J Geophys Res. https://doi.org/10.1029/2005jc003298

    Article  Google Scholar 

  • Gopalakrishnan G, Hoteit I, Cornuelle BD, Rudnick DL (2019) Comparison of 4DVAR and EnKF state estimates and forecasts in the Gulf of Mexico. Q J R Meteorol Soc 145(721):1354–1376

    Article  Google Scholar 

  • Helber RW, Townsend TL, Barron CN, Dastugue JM, Carnes MR (2013) Validation test report for the Improved Synthetic Ocean Profile (ISOP) system, Part I: Synthetic profile methods and algorithm. Naval Research Lab Stennis Detachment Stennis Space Center Ms Oceanography Div, Mississippi

    Book  Google Scholar 

  • Hogan TF, Liu M, Ridout JA, Peng MS, Whitcomb TR, Ruston BC, Reynolds CA, Eckermann SD, Moskaitis JR, Baker NL, McCormack JP (2014) The navy global environmental model. Oceanography 27(3):116–125

    Article  Google Scholar 

  • Hu J, Kawamura H, Hong H, Kobashi F, Wang D (2001) 3–6 months variation of sea surface height in the South China Sea & its adjacent ocean. J Oceanogr 57(1):69–78. https://doi.org/10.1023/a:1011126804461

    Article  Google Scholar 

  • Hu J, Zheng Q, Sun Z, Tai CK (2012) Penetration of nonlinear Rossby eddies into South China Sea evidenced by cruise data. J Geophys Res Oceans 117(C3)

  • Huang RX, Du Y (2015) Scientific questions about South China Sea ocean dynamics. Acta Oceanol Sin 34(11):1–5

    Article  Google Scholar 

  • Hunke EC, Lipscomb WH (2008) CICE: the Los Alamos sea ice model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06–012. pp. 1–76

  • Hwang C, Chen SA (2000) Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry. J Geophys Res 105(C10):23943–23965

    Article  Google Scholar 

  • Jacobs GA, Barron CN, Fox DN, Whitmer KR, Klingenberger S, May D, Blaha JP (2002) Operational altimeter sea level products. Oceanography 15(1):13–21

    Article  Google Scholar 

  • Jan S, Mensah V, Andres M, Chang MH, Yang YJ (2017) Eddy-kuroshio interactions: local and remote effects. J Geophys Res 122(12):9744–9764

    Article  Google Scholar 

  • Jia Y, Chassignet EP (2011) Seasonal variation of eddy shedding from the Kuroshio intrusion in Luzon Strait. J Oceanogr 67(5):601–611. https://doi.org/10.1007/s10872-011-0060-1

    Article  Google Scholar 

  • Jia Y, Liu Q (2005) Eddy shedding from the Kuroshio bend at Luzon Strait. J Oceanogr 60(6):1063–1069. https://doi.org/10.1007/s10872-005-0014-6

    Article  Google Scholar 

  • Jiang Y, Zhang S, Tian J, Zhang Z, Gan J, Wu CR (2020) An Examination of circulation characteristics in the Luzon Strait and the South China sea using high-resolution regional atmosphere-ocean coupled models. J Geophys Res 125(6):e2020JC016253

    Article  Google Scholar 

  • Kelly KA, Beardsley RC, Limeburner R, Brink KH, Paduan JD, Chereskin TK (1998) Variability of the near-surface eddy kinetic energy in the California current based on altimetric, drifter, and moored current data. J Geophys Res 103(C6):13067–13083

    Article  Google Scholar 

  • Ko EB, Moon IJ, Jeong YY, Chang PH (2017) A comparison of accuracy of the ocean thermal environments using the daily analysis data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA. Atmosphere 28(1):99–112

    Google Scholar 

  • Kuo YC, Chern CS (2011) Numerical study on the interactions between a mesoscale eddy and a western boundary current. J Oceanogr 67(3):263–272. https://doi.org/10.1007/s10872-011-0026-3

    Article  Google Scholar 

  • Kuo YC, Chern CS, Zheng ZW (2017) Numerical study on the interactions between the Kuroshio current in Luzon Strait and a mesoscale eddy. Ocean Dyn 67(3–4):369–381. https://doi.org/10.1007/s10236-017-1038-3

    Article  Google Scholar 

  • Lemenkova P (2020) GEBCO gridded bathymetric datasets for mapping japan trench geomorphology by means of GMT scripting toolset. Geod Cartogr 46(3):98–112

    Article  Google Scholar 

  • Li L, Nowlin WD Jr, Jilan S (1998) Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Res Part I 45(9):1469–1482

    Article  Google Scholar 

  • Li J, Zhang R, Jin B (2011) Eddy characteristics in the northern South China Sea as inferred from Lagrangian drifter data. Ocean Sci 7(5):661. https://doi.org/10.5194/os-7-661-2011

    Article  Google Scholar 

  • Lien RC, Henyey F, Ma B, Yang YJ (2014) Large-amplitude internal solitary waves observed in the northern South China Sea: properties and energetics. J Phys Oceanogr 44(4):1095–1115

    Article  Google Scholar 

  • Liu Y, Dong C, Guan Y, Chen D, McWilliams J, Nencioli F (2012) Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res, Part I 68:54–67

    Article  Google Scholar 

  • Lu J, Liu Q (2013) Gap-leaping Kuroshio and blocking westward-propagating Rossby wave & eddy in Luzon Strait. J Geophys Res 118(3):1170–1181. https://doi.org/10.1002/jgrc.20116

    Article  Google Scholar 

  • Mandal S, Sil S, Pramanik S, Arunraj KS, Jena BK (2019) Characteristics and evolution of a coastal mesoscale eddy in the Western Bay of Bengal monitored by high-frequency radars. Dyn Atmos Oceans 88:101107

    Article  Google Scholar 

  • Metzger EJ, Hurlburt HE (2001) The importance of high horizontal resolution and accurate coastline geometry in modeling South China Sea inflow. Geophys Res Lett 28(6):1059–1062. https://doi.org/10.1029/2000gl012396

    Article  Google Scholar 

  • Metzger EJ, Smedstad OM, Thoppil PG, Cummings JA, Wallcraft AJ, Zamudio L, Franklin DS, Posey PG, Phelps MW, Hogan PJ, Bub FL, DeHann CJ (2014) US Navy operational global ocean and Arctic ice predictions systems. Oceanography 27:32–43. https://doi.org/10.5670/oceanog.2014.66

    Article  Google Scholar 

  • Nan F, Xue H, Chai F, Shi L, Shi M, Guo P (2011) Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn 61(9):1291–1304. https://doi.org/10.1007/s10236-011-0426-3

    Article  Google Scholar 

  • Okkonen SR, Schmidt GM, Cokelet ED, Stabeno PJ (2004) Satellite and hydrographic observations of the Bering Sea ‘Green Belt.’ Deep Sea Res Part II 51(10–11):1033–1051

    Article  Google Scholar 

  • Pegion K, Kirtman BP, Becker E, Collins DC, LaJoie E, Burgman R, Bell R, DelSole T, Min D, Zhu Y, Li W (2019) The subseasonal experiment (SubX): a multimodel subseasonal prediction experiment. Bull Am Meteor Soc 100(10):2043–2060

    Article  Google Scholar 

  • Pegliasco C, Chaigneau A, Morrow R (2015) Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J Geophys Res 120(9):6008–6033

    Article  Google Scholar 

  • Posey P, Wang S (2013) ESPC coupled global prediction system-develop and test coupled physical parameterizations: NAVGEM/CICE/HYCOM. Naval Research Lab Stennis Detachment Stennis Space Center MS, Mississippi

    Book  Google Scholar 

  • Qiu C, Mao H, Liu H, Xie Q, Yu J, Su D, Ouyang J, Lian S (2019) Deformation of a warm eddy in the northern South China Sea. J Geophys Res 124(8):5551–5564

    Article  Google Scholar 

  • Renault L, Deutsch C, McWilliams JC, Frenzel H, Liang JH, Colas F (2016) Partial decoupling of primary productivity from upwelling in the California current system. Nat Geosci 9(7):505–508

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H (2010) The NCEP climate forecast system reanalysis. Bull Am Meteor Soc 91(8):1015–1058

    Article  Google Scholar 

  • Sheu WJ, Wu CR, Oey LY (2010) Blocking and westward passage of eddies in the Luzon Strait. Deep Sea Res Part II 57(19–20):1783–1791

    Article  Google Scholar 

  • Smith S, Ngodock H, Carrier M, Shriver J, Muscarella P, Souopgui I (2017) Validation and operational implementation of the navy coastal ocean model four dimensional variational data assimilation system (NCOM 4DVAR) in the Okinawa trough. Data assimilation for atmospheric, oceanic and hydrologic applications, vol III. Springer International Publishing, Cham, pp 405–427

    Google Scholar 

  • Su B, Zhu Z, Ke H, Wang Q, Lin M (2020) Large eddy simulation of flow and mixing characteristics in a T-junction under inflow pulsation. Appl Therm Eng 181:115924

    Article  Google Scholar 

  • Sun C, Zhang A, Jin B, Wang X, Zhang X, Zhang L (2022) Seasonal variability of eddy kinetic energy in the north Indian Ocean. Front Mar Sci. https://doi.org/10.3389/fmars.2022.1032699

    Article  Google Scholar 

  • Trott CB, Subrahmanyam B, Chaigneau A, Roman-Stork HL (2019) Eddy-induced temperature & salinity variability in the Arabian Sea. Geophys Res Lett 46(5):2734–2742. https://doi.org/10.1029/2018gl081605

    Article  Google Scholar 

  • Trott CB, Metzger EJ, Yu Z (2021) Investigating mesoscale eddy characteristics in the Luzon Strait region using altimetry. Ocean Dyn 71(6):679–698

    Article  Google Scholar 

  • Wang G, Su J, Chu PC (2003) Mesoscale eddies in the South China Sea observed with altimeter data. Geophys Res Lett. https://doi.org/10.1029/2003gl018532

    Article  Google Scholar 

  • Waterman S, Jayne SR (2011) Eddy-mean flow interactions in the along-stream development of a western boundary current jet: an idealized model study. J Phys Oceanogr 41(4):682–707

    Article  Google Scholar 

  • Xiu P, Chai F, Shi L, Xue H, Chao Y (2010) A census of eddy activities in the South China Sea during 1993–2007. J Geophys Res Oceans, 115(C3)

  • Yang Q, Liu H, Lin P (2020) The effect of oceanic mesoscale eddies on the looping path of the Kuroshio intrusion in the Luzon Strait. Sci Rep 10(1):1–10

    Google Scholar 

  • Yu LS, Bosse A, Fer I, Orvik KA, Bruvik EM, Hessevik I, Kvalsund K (2017) The lofoten basin eddy: three years of evolution as observed by Seagliders. J Geophys Res 122(8):6814–6834

    Article  Google Scholar 

  • Yuan D, Han W, Hu D (2006) Surface Kuroshio path in Luzon Strait area derived from satellite remote sensing data. J Geophys Res. https://doi.org/10.1029/2005jc003412

    Article  Google Scholar 

  • Zhang Z, Zhao W, Qiu B, Tian J (2017) Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J Phys Oceanogr 47(6):1243–1259. https://doi.org/10.1175/jpo-d-16-0185.1

    Article  Google Scholar 

  • Zhong Y, Bracco A, Tian J, Dong J, Zhao W, Zhang Z (2017) Observed and simulated submesoscale vertical pump of an anticyclonic eddy in the South China Sea. Sci Rep 7(1):1–13

    Google Scholar 

Download references

Acknowledgements

This work has been performed as part of the 6.1 South China Sea Circulation Dynamics project under program element 61153N. Computer time and resources were courtesy of the High-Performance Computing Modernization Program and were run on the Department of Defense Supercomputing Research Center (DSRC; https://centers.hpc.mil/), Stennis Space Center, MS on the HPE SGI 8600 (Gaffney) for all HYCOM products. HYCOM-R is also available publicly at https://www.hycom.org/dataserver/gofs-3pt1/reanalysis/. HYCOM-S output is available upon request and the HYCOM-F output is available to US Department of Defense (DoD) and DoD contractors only. Information about ALPS can be found at https://www7320.nrlssc.navy.mil/altimetry/. This is NRL contribution number NRL-JA-7320-22-5655. Approved for public release, distribution is unlimited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne B. Trott.

Ethics declarations

Conflict of interest

The authors declare no financial or personal conflict of interest that could inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trott, C.B., Metzger, E.J. & Yu, Z. Luzon strait mesoscale eddy characteristics in HYCOM reanalysis, simulation, and forecasts. J Oceanogr 79, 423–441 (2023). https://doi.org/10.1007/s10872-023-00686-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-023-00686-5

Keywords

Navigation