Skip to main content
Log in

Warfarin Tautomers in Solution: A Structural, Computational and Thermodynamic Study

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Variable temperature NMR spectroscopic measurements on (S)-warfarin [open-form: 3-(1′-phenyl-3′-oxobut-1′-yl)-4-hydroxycoumarin] in CDCl3, CD3OD and d6-DMSO generally showed tautomeric compositions in the order trans (2S,4S) coumarin hemiketal > cis (2R,4S) coumarin hemiketal > open (S) coumarin enol in slow dynamic equilibrium over temperature ranges rising modestly from ambient. A computational (DFT-M06-2X) examination of the lower energy tautomers including coumarin and chromone open and cyclic forms (gas phase, chloroform or DMSO fields) was consistent with the general solution compositions. The crystal and molecular structures for model compounds of the major solution tautomers are reported: (2S,4S)-warfarin methyl ketal [orthorhombic, P212121], (2R,4S)-warfarin methyl ketal [orthorhombic, P212121], (rac)-warfarin-4-methyl ether [monoclinic, P21/n], and the open chromone (S)-warfarin-2-methyl ether [monoclinic, P21, Z = 8]. A combination of direct integration and line-fitting methods were used to determine solution (S)-warfarin tautomer compositions. As temperatures were increased, the concentrations of the open coumarin form increased at the expense of the cyclic hemiketals. Equilibrium constants were used to determine the standard free-energy differences for the two open-cyclic equilibria (trans hemiketal \(\rightleftharpoons\) open, open \(\rightleftharpoons\) cis hemiketal, respectively) in three solvents: CDCl3 [+ 3.7(4), − 2.8(6) kJ/mol], CD3OD [+ 7.6(16), − 4.7(9) k/mol], d6-DMSO [+ 3.5(7), − 1.1(2) kJ/mol]. Standard enthalpy and entropy differences were also determined from van’t Hoff analysis. Rates of the respective reactions were estimated from line-widths for the cyclic hemiketals and solution equilibrium compositions for each species. Eyring analysis gave ΔG, ΔH, and ΔS, respectively, for the forward and reverse reactions of coumarin trans hemiketal \(\rightleftharpoons\) open-form and for the open-form \(\rightleftharpoons\) cis hemiketal. Negative entropic contributions to the observed transition state energies were consistent with solvent or solute ordering in the prototropic reactions. Open-form NMR signals were broader than could be accounted for by the open-cyclic equilibria alone, increasingly so in polar and protic solvents and with rising temperatures. While a conformational equilibrium may operate, an increasingly faster intermediate dynamic equilibrium between open coumarin-chromone tautomers may be a more likely explanation.

Graphical Abstract

Structures of methylated warfarin tautomers and computational models enabled assignment of overlapping warfarin tautomeric NMR spectra and through variable temperature analysis, provided the thermodynamics of the tautomeric equilibria in three solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 4
Fig. 9

Similar content being viewed by others

Data Availability

Crystallographic details for structures 2 (CCDC #2286286), 3 (CCDC #2286287), 4 (CCDC #2286288) and 5 (CCDC #2286289) have been deposited with the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk) and are available on request.

References

  1. Majerus PW, Broze GJ, Miletich JP, Tollefsen DM (1996) Anticoagulant, thrombolytic, and antiplatelet drugs. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 9th edn. McGraw-Hill, New York, pp 1346–1350

    Google Scholar 

  2. Essential Medicines List (EML) (2021) World Health Organization, 22nd list

  3. Petitpas I, Bhattacharya AA, Twine S, East E, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin: anatomy of drug site I. J Biol Chem 276:22804–22809

    Article  CAS  PubMed  Google Scholar 

  4. Wu S, Chen X, Da J-Y, Stafford DW, Pedersen LG, Tie J-K (2018) Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. Blood 132(6):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Williams PA, Cosme J, Ward A, Angove HC, Vinković DM, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Porter WR (2010) Warfarin: history, tautomerism and activity. J Comput Aided Mol Des 24:553–573

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Malde AK, Stroet M, Caron B, Visscher KM, Mark AE (2018) Predicting the prevalence of alternative warfarin tautomers in solution. J Chem Theory Comput 14:4405–4415

    Article  CAS  PubMed  Google Scholar 

  8. Nicholls IA, Karlsson BCG, Rosengren AM, Henschel H (2010) Warfarin: an environment-dependent switchable molecular probe. J Mol Recognit 23:604–608

    Article  CAS  PubMed  Google Scholar 

  9. Stella VJ, Mooney KG, Pipkin JD (1984) Dissolution and ionization of warfarin. J Pharm Sci 73:946–948

    Article  CAS  PubMed  Google Scholar 

  10. Vasquez JM, Vu A, Schultz JS, Vullev VI (2009) Fluorescence enhancement of warfarin induced by interaction with beta-cyclodextrin. Biotechnol Prog 25:906–914

    Article  CAS  PubMed  Google Scholar 

  11. Valente EJ, Ruggiero G, Miller CW, Zubkowski JD, Eggleston DS (1997) Diastereomeric discrimination: structural aspects. In: Materials synthesis and characterization, Chapter 2, pp 19–60. Plenum Publishing Co., New York

  12. Bravic G, Gaultier J, Hauw C (1973) Crystal structure of an antivitamin K, warfarin. Compt Rendus Acad Sci Paris Ser C 277(22):1215–1218

    CAS  Google Scholar 

  13. Valente EJ, Trager WF, Jensen LH (1975) Crystal and molecular structure and absolute configuration of (-)(S)-warfarin. Acta Crystallogr A B31:954–960

    Article  ADS  CAS  Google Scholar 

  14. Pisklak M, Maciejewska M, Herold F, Wawer I (2003) Solid state structure of coumarin anticoagulants: warfarin and sintrom. 13C CPMAS NMR and GIAO DFT calculations. J Mol Struct 649:169–176

    Article  ADS  CAS  Google Scholar 

  15. Valente EJ, Santarsiero BD, Schomaker V (1979) Conformation of dihydropyran rings: the structures of two 3,4-dihydro-2H,5H-pyrano[3,2-c][1]benzopyran-5-ones. J Org Chem 44:798–802

    Article  CAS  Google Scholar 

  16. Valente EJ, Hodgson DJ (1980) 2-Methyl-2-hydroxy-4-cyclohexyl-3,4-dihydro-2H,5H-pyrano[3,2 c][1]benzopyran 5 one. Acta Crystallogr A B35:3099–3101

    ADS  Google Scholar 

  17. Valente EJ, Schomaker V (1984) A Structure containing diastereomers, (2S,2R)-trans and (2R,4R)-cis 2-hydroxy 2,4 dimethyl 3,4 dihydro-2H,5H-pyrano[3,2 c][1]benzopyran 5 one. Acta Crystallogr A C40:1068–1070

    ADS  CAS  Google Scholar 

  18. Valente EJ, Eggleston DS, Schomaker V (1986) Structures of five trans-2-hydroxy and methoxy-2-methyl-3,4-dihydro-4-aryl-2H,5H -pyrano[3,2 c][1]benzopyran-5-ones. Acta Crystallogr A C42:1809–1813

    ADS  CAS  Google Scholar 

  19. Valente EJ, Eggleston DS, Schomaker V (1987) Structures of four trans-2-hydroxy- and methoxy-2-methyl-3,4-dihydro-4-alkyl-2H,5H -pyrano[3,2-c][1]benzopyran-5-ones. Acta Crystallogr A C43:533–536

    ADS  CAS  Google Scholar 

  20. Castleberry BS, Ruggiero G, Valente EJ, Eggleston DS (1988) Structures of cis-4-(2-methoxyphenyl)- and trans-4-(3-methoxy-4-hydroxyphenyl)-2-hydroxy-2-methyl-3,4- dihydro-2H,5H -pyrano[3,2 c][1]benzopyran 5 one. Acta Crystallogr A C44:1281–1283

    ADS  CAS  Google Scholar 

  21. Ruggiero G, Valente EJ, Eggleston DS (1989) Structures of (±) cis-2-hydroxy-4-(2-phenylethyl) and cis-4-phenyl-2-methyl-3,4-dihydro-2H,5H -pyrano[3,2 c][1]benzopyran 5 one. Acta Crystallogr A C45:1369–1372

    ADS  CAS  Google Scholar 

  22. Savell VH Jr, Valente EJ, Eggleston DS (1989) Structures of (±) trans-4-(3-nitrophenyl)- and (+)-trans-4 (4-fluorophenyl)-2-hydroxy-2-methyl-3,4-dihydro-2H,5H -pyrano[3,2 c][1]benzopyran 5 one. Acta Crystallogr A C45:1908–1911

    ADS  CAS  Google Scholar 

  23. Ruggiero G, Platt OL Jr, Valente EJ, Eggleston DS (1989) Structures of (±)-trans-4-(2,3-dimethoxyphenyl) and (+) trans 4-(4-methylphenyl)-2-hydroxy-2-methyl-3,4-dihydro-2H,5H -pyrano[3,2 c][1]benzopyran-5-one. Acta Crystallogr A C45:1740–1743

    ADS  CAS  Google Scholar 

  24. Valente EJ, Eggleston DS (1991) Dihydropyran Ring Conformations I: Structures of 2-methoxy and hydroxy-2,4-dimethyl-3,4-dihydro-2H,5H -pyrano[3,2 c][1]benzopyran 5 ones. Acta Crystallogr A B47:498–501

    Article  ADS  CAS  Google Scholar 

  25. Giannini DA, Chan KK, Roberts JD (1974) Carbon-13 nuclear magnetic resonance spectroscopy. Structure of the anticoagulant warfarin and related compounds in solution. Proc Natl Acad Sci USA 71:4221–4223

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valente EJ, Lingafelter EC, Porter WR, Trager WF (1977) The structure of warfarin in solution. J Med Chem 20:1489–1493

    Article  CAS  PubMed  Google Scholar 

  27. Obaseki AO, Porter WP (1987) Structure of analogs of warfarin in solution. Arch Pharm Chem Life Sci 5:110–121

    Google Scholar 

  28. Valente EJ, Trager WF (1978) The anomalous chiroptical properties of warfarin and phenprocoumon. J Med Chem 21:141–143

    Article  CAS  PubMed  Google Scholar 

  29. Rosengren AM, Karlsson BCG (2011) Spectroscopic evidence for the presence of the cyclic hemiketal form of warfarin in aqueous solution: Consequences for bioavailability. Biochem Biophys Res Commun 407:318–320

    Article  CAS  PubMed  Google Scholar 

  30. Obaseki AO, Porter WR, Trager WF (1982) 4-Hydroxycoumarin/2-hydroxychromone tautomerism: infrared spectra of 2–13C and 3-D labeled 4-hydroxycoumarin and its anion. J Heterocycl Chem 19:385–390

    Article  CAS  Google Scholar 

  31. Townsend MG, Odam EM (1976) The identification of two products formed during the methylation of warfarin with diazomethane. Chem Ind 6:274–275

    Google Scholar 

  32. Valente EJ (1977) A structural study of coumarin anticoagulants and other derivatives of 4-hydroxycoumarin. University of Washington, Seattle, WA. Dissertation

  33. Guasch L, Peach ML, Nicklaus MC (2015) Tautomerism of warfarin: combined chemoinformatics, quantum chemical, and NMR Investigation. J Org Chem 80:9900–9909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin YC (2009) Let’s not forget the tautomers. J Comput Aided Mol Des 23:693–704

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim H, Yes C, Preston P, Chin J (2006) Substrate-directed stereoselectivity in vicinal diamine-catalyzed synthesis of warfarin. Org Lett 8:5239–5242

    Article  CAS  PubMed  Google Scholar 

  36. West BD, Preis S, Schroeder CH, Link KP (1961) Studies on the 4-hydroxycoumarins. XVII. The resolution and absolute configuration of warfarin. J Am Chem Soc 83:2676–2679

    Article  CAS  Google Scholar 

  37. He M, Korzekwa KR, Jones JP, Rettie AE, Trager WF (1999) Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C91. Arch Biochem Biophys 372:16–28

    Article  CAS  PubMed  Google Scholar 

  38. Bush E, Trager WF (1983) High yield synthesis of warfarin and its hydroxylated metabolites: new compounds. J Pharm Sci 72:830–831

    Article  CAS  PubMed  Google Scholar 

  39. CrysalisPro (2023) Software for collection and analysis for single-crystal X-ray data. Rigaku Corporation, version 2020

  40. Clark RS, Reid JS (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr A51:887–897

    Article  ADS  CAS  Google Scholar 

  41. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122; program release of 2018

  42. Johnson CK, Guerdon JF, Richard P, Whitlow S, Hall SR (1972) ORTEP. The X-RAY system of crystallographic programs. TR-192. 283p

  43. Bruker Corporation, Billerica MA (2023) Topspin 4.3.0; Analytical tool “Teddy”

  44. Dennington R, Keith TA, Millam JM (2016) GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS

  45. Dnielyan E, Zunigs M, Hoang K, Magers DH, Osborne DA, Valente EJ (2023) Cyclic-open tautomerism in a warfarin analog. J Chem Crystallogr. https://doi.org/10.1007/s10870-023-00984-2

    Article  Google Scholar 

  46. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871

    Article  ADS  MathSciNet  Google Scholar 

  47. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138

    Article  ADS  MathSciNet  Google Scholar 

  48. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Phys Chem 110:5121–5129

    Article  CAS  Google Scholar 

  49. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  ADS  CAS  Google Scholar 

  50. Mennucci B, Cances C, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101(49):10506–10517

    Article  CAS  Google Scholar 

  51. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999–3094

    Article  CAS  PubMed  Google Scholar 

  52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Azmaylov AF, JSonnenberg JL, Williams-Young D, Ding J, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T , Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Kendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016). Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT

  53. Shahzadi S, Ali S, Asif I, Ashraf R, Jin G-X (2006) The mechanism and crystal structure of 2-methoxy-2-methyl-4-phenyl-3,4,4a, 0b-tetrahydro-2H,5H-pyrano[3,2-c]chromen-5-one. Acetal of warfarin acid. Turk J Chem 30(6):703–709

    CAS  Google Scholar 

  54. Sakpal SS et al (2021) The curious case of aqueous warfarin: structural isomers or distinct excited states? J Phys Chem B 125:287–2878

    Article  Google Scholar 

  55. Nowak P, Olechowska P, Mitoraj M, Wozniakiewicz M, Kocielniak P (2015) Determination of acid dissociation constants of warfarin and hydroxywarfarins by capillary electrophoresis. J Pharm Biomed Anal 112:89–97

    Article  CAS  PubMed  Google Scholar 

  56. Castleberry B, Valente EJ (1990) Open-cyclic warfarin isomerism: 5-hydroxywarfarin. J Chem Crystallogr 20:583–593

    CAS  Google Scholar 

  57. Casalone G, Pilati T, Binello A (1998) Five 3,4-dihydro-2H,5H-pyrano[3,2-c][1]-benzopyran-5-one derivatives. Acta Crystallogr A C54:1042–1047

    ADS  CAS  Google Scholar 

  58. Wang Y, Zhang W, Xi X, Zhang G (2010) (4R)-Ethyl 4-(4-chlorophenyl)-2-hydroxy-5-oxo-2,3,4,5-tetrahydropyrano[3,2-c]-chromene-2-carboxylate. Corrigendum. Acta Crystallog E 66:o217

    Article  CAS  Google Scholar 

  59. Valente EJ, Porter WR, Trager WF (1978) The conformation of selected 3-substituted 4-hydroxycoumarins in solution by NMR: warfarin and phenprocoumon. J Med Chem 21:231–234

    Article  CAS  PubMed  Google Scholar 

  60. Duong T-V, Carroll TS, Bejan DS, Valente EJ (2020) β-Chain hydrogen-bonding in 4-hydroxycoumarins. J Chem Crystallogr 50:387–399

    Article  CAS  Google Scholar 

  61. Henschel H, Karlsson BCG, Rosengren AM, Nicholls IA (2010) The mechanistic basis for warfarin’s structural diversity and implications for its bioavailability. J Mol Struct 958:7–9

    Article  CAS  Google Scholar 

  62. Mercury (2016) Cambridge Crystallographic Data Center, version 3.10

  63. Talsi VP, Evdokimov SN (2017) New cases of prototropic tautomerism in substituted pyridines. J Chem Eng Bioanal Chem 1:38–48

    Google Scholar 

  64. Friebolin H (1993) Basic one-and two-dimensional NMR spectroscopy, 2nd edn. VCH Publishers, New York

    Google Scholar 

  65. Chibber SS, Sharma RP (1978) Tautomerism of 2-hydroxychromones and 4-hydroxycoumarins. Curr Sci 47:730–731

    CAS  Google Scholar 

  66. Beak P, Lee J-K (1974) Methylation of prototropic ambident nucleophiles. the proton as a formal directing group. J Org Chem 40:147–148

    Article  Google Scholar 

  67. Manolov I, Maichle-Moesssmer C (2013) Synthesis and crystal structure of 4-hydroxy-3-[(3E)-3-(hydroxyimino)-1-(4-nitrophenyl)butyl]-2H-chromen-2-one. Bul Chem Commun 15:109–113

    Google Scholar 

  68. Manolov I, Maichle-Moesssmer C (2007) Crystal structure of 4-hydroxy-3-[1-phenyl-2-(4-methoxybenzoyl)ethyl]-2H-1-benzopyran-2-one. Anal Sci 23:x79–x80

    Google Scholar 

  69. Sheth AR, Brennessel WW, Young VC Jr, Muller FX, Grant DJW (2004) Solid-State properties of warfarin sodium 2-propanol solvate. J Pharm Sci 93:2669–2690

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

National Science Foundation (MRI #0604188) for crystallographic equipment (EV), and University of Portland Butine and SURE funding for computational hardware and software (DO), and a research stipend (KH). DO, ED, and KH performed the computations, DO analyzed the computations and determined torsional, angle, and distance metrics. EJV performed the syntheses, spectroscopic and crystallographic experiments. We thank Dr. David H. Magers, Mississippi College, for discussions on computational strategies.

Corresponding author

Correspondence to Edward J. Valente.

Ethics declarations

Conflict of interest

The authors declare no conflicting financial or other interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 435 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborne, D.A., Danielyan, E., Hoang, K. et al. Warfarin Tautomers in Solution: A Structural, Computational and Thermodynamic Study. J Chem Crystallogr 54, 64–83 (2024). https://doi.org/10.1007/s10870-023-00999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-023-00999-9

Keywords

Navigation