Skip to main content
Log in

N,N′-Di(pyridine-4-yl)-pyridine-3,5-dicarboxamide, a Pincer-Type Tricationic Compound; Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Chemistry Studies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The synthesis, structure, and spectroscopic characterization of a pincer-type compound; N,N′-di(pyridine-4-yl)-pyridine-3,5-dicarboxamide is described. The tricationic pro-ligand (C20H22N5O2)3+ bearing two pendant alkylated 4-pyridyl arms at the 3,5-positions of the central pyridyl group features three triflate anions (CF3SO3) in the asymmetric unit. Two of the triflate ligands in the structure are connected to the pincer cation by strong N–H⋯O hydrogen bonds. The central N-methyl moiety is planar to a r.m.s deviation of 0.01, and the two adjacent N-methylpyridine moieties are out of the plane with dihedral angles of 33.62° (3) and 86.08° (3). The molecular packing structure of the compound shows an 18-molecule aggregate in a 3-dimensional supramolecular synthon stabilized by intermolecular N–H⋯O and C–H⋯O contacts. The Hirshfeld surface analysis and fingerprint plots show that the OH/HO contacts resulting from C–H⋯O intermolecular interactions contributed significantly to the overall surface interaction with a total percentage contribution of 35.4%. The pairwise interaction energy calculations were implemented with a Gaussian plugin in Crystal Explorer 17 at the B3LYP/6-31G(d,p) level of theory. Energy profile diagrams and interaction energy values indicate that the crystal structure was stabilized by a combination of electrostatic and dispersion forces in the crystal lattice.

Graphic Abstract

The crystal structure of a tricationic pro-ligand N,N′-di(pyridine-4-yl)-pyridine-3,5-dicarboxamide is described. The structures features three triflate anions in the asymmetric unit with two of the triflate ligands in the structure connected to the pincer pro-ligand by strong N–H⋯O hydrogen bonds. Hirshfeld surface interaction and pairwise interaction energies are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dutta S, Pal S, Bhattacharya PK (1999) Synthesis and characterization of some Ru (II) complexes of 2-carbamoylpyridine derivatives. Polyhedron 18(16):2157–2162

    Article  CAS  Google Scholar 

  2. Wang Y, Zhang B, Guo S (2020) Transition metal complexes supported by N-heterocyclic carbene-based pincer platforms: synthesis, reactivity, and applications. Eur J Inorg Chem 2021:188

    Article  Google Scholar 

  3. Redmore SM, Rickard CE, Webb SJ, Wright LJ (1997) Ruthenium complexes of a simple tridentate ligand bearing two “distal” pyridine bases. Inorg Chem 36(21):4743–4748

    Article  CAS  Google Scholar 

  4. Hunter CA, Shannon RJ (1996) Photoinduced electron transfer on a supramolecular scaffold. Chem Commun 11:1361–1362

    Article  Google Scholar 

  5. Navarro M, Li M, Müller-Bunz H, Bernhard S, Albrecht M (2016) Donor-flexible nitrogen ligands for efficient iridium-catalyzed water oxidation catalysis. Chemistry 22(20):6740–6745

    Article  CAS  Google Scholar 

  6. Navarro M, Smith CA, Albrecht M (2017) Enhanced catalytic activity of iridium (III) complexes by facile modification of C, N-bidentate chelating pyridylideneamide ligands. Inorg Chem 56(19):11688–11701

    Article  CAS  Google Scholar 

  7. Hunter CA, Purvis DH (1992) Ein makrocyclischer Rezeptor für zwei Chinonmoleküle. Angew Chem Int Ed 104(6):779–782

    Article  CAS  Google Scholar 

  8. Rigaku OD (2015) CrysAlisPro Software System, version 1.171. 38.41 l. R. Corporation (Ed.), Oxford

  9. Sheldrick GM (2015) SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr A 71(1):3–8

    Article  Google Scholar 

  10. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71(1):3–8

    Article  Google Scholar 

  11. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341

    Article  CAS  Google Scholar 

  12. Zheng L, Yu Z, Peng W, Okamura TA, Wei-Yin S (2012) One-dimensional ribbon-like chain coordination polymers with pyridyl and amide-containing ligand: synthesis, structure and luminescence property. Chin J Inorg Chem 28(7):1469–1476

    Google Scholar 

  13. Demir S, Çepni HM, Bilgin N, Hołyńska M, Yilmaz F (2016) Metal-organic frameworks based on copper (I) iodide and pyridine-3, 5-dicarboxylic acid: synthesis, crystal structures, and luminescent properties. Polyhedron 115:236–241

    Article  CAS  Google Scholar 

  14. Brown DW, Floyd AJ, Sainsbury M (1988) Organic spectroscopy. Wiley, New York

    Google Scholar 

  15. Liao L, Jia X, Lou H, Zhong J, Liu H, Ding S, Chen C, Hong S, Luo X (2021) Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications. RSC Adv 11(19):11519–11528

    Article  CAS  Google Scholar 

  16. Greenwood N, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  17. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2(12):S1–S19

    Article  Google Scholar 

  18. Turner M, McKinnon J, Wolff S, Grimwood D, Spackman P, Jayatilaka D, Spackman M (2017) CrystalExplorer17, University of Western Australia

  19. Tan SL, Jotani MM, Tiekink ER (2019) Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots, and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr E 75(3):308–318

    Article  CAS  Google Scholar 

  20. Asegbeloyin JN, Ifeanyieze KJ, Okpareke OC, Oyeka EE, Groutso TV (2019) Crystal structure and Hirshfeld surface analysis of a new dithioglycoluril: 1, 4-bis (4-methoxyphenyl)-3a-methyltetrahydroimidazo [4, 5-d] imidazole-2, 5 (1H, 3H)-dithione. Acta Crystallogr E 75(9):1297–1300

    Article  CAS  Google Scholar 

  21. Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates, and open-shell systems. IUCrJ 4(5):575–587

    Article  CAS  Google Scholar 

  22. Ekowo LC, Eze SI, Ezeorah JC, Groutso T, Atiga S, Lane JR, Okafor S, Akpomie KG, Okparaeke OC (2020) Synthesis, structure, Hirshfeld surface, DFT and in silico studies of 4-[(E)-(2, 5-dimethoxybenzylidene) amino]-1, 5-dimethyl-2-phenyl-1, 2-dihydro-3H-pyrazol-3-one (DMAP) and its metal complexes. J Mol Struct 1210:127994

    Article  CAS  Google Scholar 

  23. Tan SL, Tiekink ER (2019) A 1: 2 co-crystal of 2, 2′-dithiodibenzoic acid and benzoic acid: crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr E 75(1):1–7

    Article  CAS  Google Scholar 

  24. Ozochukwu IS, Okpareke OC, Izuogu DC, Ibezim A, Ujam OT, Asegbeloyin JN (2021) N’-[(pyridin-3-yl)methylidene]benzenesulfonohydrazone: Crystal structure, DFT, Hirshfeld surface and in silico anticancer studies. Eur J Chem 12(3):256–264

    Article  CAS  Google Scholar 

  25. Zhu XH, Jiang DY, Hu T, Li DH (2018) A Co (II) complex from a pyridylamide ligand: synthesis and structural characterization. Zeitschrift für Naturforschung B 73(3–4):265–268

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Prof. L. James Wright for his academic guidance and Tatiana Groutso of the School of Chemical Sciences, the University of Auckland for the acquisition of X-ray Crystal Data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obinna Chibueze Okpareke.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this article.

Data Availability

CCDC 2086624 contain the supplementary crystallographic data for this article. These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: + 44 1223 336 033, email: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/].

Code Availability

All software and codes used are open source and can be obtained freely online.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayiya, B.B., Okpareke, O.C. N,N′-Di(pyridine-4-yl)-pyridine-3,5-dicarboxamide, a Pincer-Type Tricationic Compound; Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and Computational Chemistry Studies. J Chem Crystallogr 52, 174–184 (2022). https://doi.org/10.1007/s10870-021-00902-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00902-4

Keywords

Navigation