Skip to main content
Log in

Single Crystal Structure of Terfenadine Form I

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Terfenadine, C32H41NO2, 1, contains an α,α-diphenyl-4-piperidinomethanol moiety, which is related to the H1-receptor blocking activity, facilitating its prior use as an antihistamine drug. In addition to its bioactivity, terfenadine is useful as a model, small-molecule crystalline solid for studying several material properties. Despite a history of therapeutic use, the absence of a crystal structure has limited current studies of the physicochemical behavior of this material. In the present manuscript, the elusive X-ray crystal structure of 1 was solved and refined at 296 K using single crystals grown from a co-solvent mixture of acetonitrile:methanol:ethanol (0.50:0.25:0.25). Terfenadine crystallizes in the monoclinic space group P21/n, and exhibits a chair conformation of the piperidine ring and a gauche conformation of the n-butyl chain. Hydrogen bonds between O–H⋯O and O–H⋯N, along with weak van der Waals interactions between C16–H16B⋯H16B’–C16’ and C2–H2⋯H16A–C16A were confirmed using Hirshfeld-Surface analysis. Differential scanning calorimetry and X-ray powder diffraction confirmed that the crystal structure reported herein was that of the most thermodynamically stable monotropic polymorph of terfenadine (form I).

Graphic Abstract

The elusive single crystal structure of terfenadine is solved and refined. Characterization using differential scanning calorimetry and powder X-ray diffraction confirms the structure to be the thermodynamically most stable polymorph (form I).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

CCDC 2060883 contains the crystallographic data for compound 1 reported in this article. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Center (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK: fax: +44(0)1223-336,033; email: deposit@ccdc.cam.ac.uk.

References

  1. Zhang M, Ter Laak A, Timmerman H (1993) Structure-activity relationships within a series of analogues of the histamine H1-antagonist terfenadine. Eur J Med Chem 28(2):165–173

    Article  CAS  Google Scholar 

  2. Carr A, Meyer D (1982) Synthesis of terfenadine. Arzneimittelforschung 32(9a):1157–1159

    CAS  PubMed  Google Scholar 

  3. Pratt CM, Hertz RP, Ellis BE, Crowell SP, Louv W, Moyé L (1994) Risk of developing life-threatening ventricular arrhythmia associated with terfenadine in comparison with over-the-counter antihistamines, ibuprofen and clemastine. Am J Card 73(5):346–352

    Article  CAS  Google Scholar 

  4. Bookwala M, DeBoyace K, Buckner IS, Wildfong PLD (2020) Predicting density of amorphous solid materials using molecular dynamics simulation. AAPS PharmSciTech 21(3):1–11

    Article  Google Scholar 

  5. Amidon GL, Lennernäs H, Shah VP, Crison JR (1995) A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12(3):413–420

    Article  CAS  Google Scholar 

  6. DeBoyace K, Buckner IS, Gong Y, Ju TR, Wildfong PLD (2018) Modeling and prediction of drug dispersability in polyvinylpyrrolidone-vinyl acetate copolymer using a molecular descriptor. J Pharm Sci 107(1):334–343

    Article  CAS  Google Scholar 

  7. DeBoyace K, Zdaniewski C, Wildfong PLD (2018) Differential scanning calorimetry isothermal hold times can impact interpretations of drug-polymer dispersability in amorphous solid dispersions. J Pharm Bio Ana 150:43–50

    Article  CAS  Google Scholar 

  8. Dudognon E, Bama J-A, Affouard F (2019) Molecular mobility of terfenadine: investigation by dielectric relaxation spectroscopy and molecular dynamics simulation. Mol Pharm 16(11):4711–4724

    Article  CAS  Google Scholar 

  9. Moore MD, Wildfong PLD (2011) Informatics calibration of a molecular descriptors database to predict solid dispersion potential of small molecule organic solids. Int J Pharm 418(2):217–226

    Article  CAS  Google Scholar 

  10. Vasa DM, Dalal N, Katz JM, Roopwani R, Nevrekar A, Patel H, Buckner IS, Wildfong PLD (2014) Physical characterization of drug:polymer dispersion behavior in polyethylene glycol 4000 solid dispersions using a suite of complementary analytical techniques. J Pharm Sci 103(9):2911–2923

    Article  CAS  Google Scholar 

  11. Lin Y, Cogdill RP, Wildfong PLD (2009) Informatic calibration of a materials properties database for predictive assessment of mechanically activated disordering potential for small molecule organic solids. J Pharm Sci 98(8):2696–2708

    Article  CAS  Google Scholar 

  12. Pajula K, Lehto V-P, Ketolainen J, Korhonen O (2012) Computational approach for fast screening of small molecular candidates to inhibit crystallization in amorphous drugs. Mol Pharm 9(10):2844–2855

    Article  CAS  Google Scholar 

  13. Bruker (1998) SMART and SAINT (Version 6.02). Bruker AXS Inc, Madison, Wisconsin

  14. Sheldrick GM (1996) Sadabs. University of Göttingen, Germany

    Google Scholar 

  15. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71(1):3–8

    Article  Google Scholar 

  16. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64(1):112–122

    Article  CAS  Google Scholar 

  17. Hübschle CB, Sheldrick GM, Dittrich B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr 44(6):1281–1284

    Article  Google Scholar 

  18. Leităo M, Canotilho J, Cruz M, Pereira J, Sousa A, Redinha J (2002) Study of polymorphism from DSC melting curves; polymorphs of terfenadine. J Therm Anal Calorim 68(2):397–412

    Article  Google Scholar 

  19. Yonemochi E, Hoshino T, Yoshihashi Y, Terada K (2005) Evaluation of the physical stability and local crystallization of amorphous terfenadine using XRD–DSC and micro-TA. Thermochim Acta 432(1):70–75

    Article  CAS  Google Scholar 

  20. Tessler L, Goldberg I (2005) The methanol disolvate and the dihydrate of fexofenadine, an antihistamine drug. Acta Crystallogr C 61(12):707–710

    Article  Google Scholar 

  21. Ellena J, Punte G, Rivero B, Remedi M, De Vargas E, De Rossi R (1995) X-ray structural and spectroscopic investigation of 1-piperidine-2, 4-dinitrobenzene. J Chem Crystallogr 25(12):801–805

    Article  CAS  Google Scholar 

  22. Parvez M, Bakhtiar M, Baqir M, Zia-ur-Rehman M (2014) Syntheses and crystal structures of four novel thiophene/phenyl-piperidine hybrid chalcones. J Chem Crystallogr 44(11):580–585

    Article  CAS  Google Scholar 

  23. Allen F, Kennard O, Watson D, Brammer L, Orpen A, Taylor R (1987) Molecular structures and dimensions. J Chem Soc Perkin Trans 2:S1–S19

    Article  Google Scholar 

  24. Danovich D, Shaik S, Neese F, Echeverria J, Aullon G, Alvarez S (2013) Understanding the nature of the CH··· HC interactions in alkanes. J Chem Theory Comput 9(4):1977–1991

    Article  CAS  Google Scholar 

  25. Li J, Wang Y, An L, Chen J, Yao L (2018) Direct observation of CH/CH van der Waals interactions in proteins by NMR. J Am Chem Soc 140(9):3194–3197

    Article  CAS  Google Scholar 

  26. Mirzaei M, Nikpour M, Bauzá A, Frontera A (2015) On the Importance of C–H/π and C–H⋅⋅⋅ H–C interactions in the solid state structure of 15-lipoxygenase inhibitors based on eugenol derivatives. ChemPhysChem 16(10):2260–2266

    Article  CAS  Google Scholar 

  27. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11(1):19–32

    Article  CAS  Google Scholar 

  28. Salpage SR, Smith MD, Shimizu LS (2016) Crystal structures and Hirshfeld surface analyses of 6-substituted chromones. J Chem Crystallogr 46(4):170–180

    Article  CAS  Google Scholar 

  29. Janiak C (2000) A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J Chem Soc Dalton Trans 21:3885–3896

    Article  Google Scholar 

  30. Montgomery MJ, O’Connor TJ, Tanski JM (2015) Crystal structures of 4-chloropyridine-2-carbonitrile and 6-chloropyridine-2-carbonitrile exhibit different intermolecular π-stacking, C–H⋯ Nnitrile and C–H⋯ Npyridine interactions. Acta Crystallogr E 71(7):852–856

    Article  CAS  Google Scholar 

  31. Quinn TR, Tanski JM (2014) Crystal structure of 4-chloro-2-iodoaniline. Acta Crystallogr E 70(9):944–945

    Article  Google Scholar 

  32. Badwan AA, Al Kaysi HN, Owais LB, Salem MS, Arafat TA (1990) Terfenadine. In: Anal Profiles Drug Subst, vol 19. Elsevier, pp 627–662

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of MB, AG, JAA, PLDW. MB, AG, JAA, PLDW have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Peter L. D. Wildfong.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bookwala, M., Gumireddy, A., Aitken, J.A. et al. Single Crystal Structure of Terfenadine Form I. J Chem Crystallogr 52, 81–88 (2022). https://doi.org/10.1007/s10870-021-00892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00892-3

Keywords

Navigation