Skip to main content
Log in

Synthesis, Crystal Structure, DFT Calculations and Hirshfeld Surface Analysis of 3-Chloro-2,6-Bis(4-Chlorophenyl)-3-Methylpiperidin-4-One

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The 3-chloro-2,6-bis(4-chlorophenyl)-3-methylpiperidin-4-one (CCMP) compound have been characterized by FT-IR, 1H-NMR, 13C-NMR, 1H-1H NOESY spectroscopy and single-crystal X-ray diffraction. The title compound crystallizes in the orthorhombic space group Pna21. The single crystal measurements reveal a distorted chair conformation [puckering parameter Q = 0.557 (3) A°; θ = 167.8 (3)° and Ψ = 206.8 (13)°]. The optimized geometric parameters and frequency values were theoretically calculated using DFT/B3LYP method with B3LYP/6–31+G(d,p) basis set. The XRD single crystal measurement parameters are good agreed with the optimized parameters. The spectral and optimized parameters showed that the piperidine-4-one ring adopts normal chair conformation with equatorial orientations of all the substituents except chlorine. The frontier molecular orbitals HOMO and LUMO were computed to know the chemical reactivity and kinetic stability of the molecular compound. Hirshfeld surface analysis was also performed. Hirshfeld surface analysis (dnorm surface, two-dimensional fingerprint plots and molecular electrostatic potantials) revealed the nature of intermolecular interactions. The most important contributions for the crystal packing are from H···H (35%), Cl···H/H···Cl (32.3%), C···H/H···C (15%) and O···H/H···O (7.5%) interactions.

Graphic Abstract

In this study, spectroscopic properties of a new piperidine-4-one crystal compound and it’s DFT structural investigation compared with experimental were gained to literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Klayman DL, Bartosevich JF, Scott Griffin T, Mason CJ, Scovill JP (1979) J Med Chem 22:855–862

    CAS  PubMed  Google Scholar 

  2. Gopalakrishnan M, Sureshkumar P, Thanusu J, Kanagarajan V (2008) J. Korean Chem Soc 52:503–510

    CAS  Google Scholar 

  3. Bharti N, Husain K, Gonzalez Garza MT, Cruz-Vega DE, Catro-Garza J, Mata-Cardenas BD, Naqvi F, Azam A (2002) Bioorg Med Chem Lett 12:3475–3478

    CAS  PubMed  Google Scholar 

  4. Sivakumar S, Manimekalai A (2009) Spectrochim. Acta. A 75:113–120

    Google Scholar 

  5. Savithiri S, Arockia doss M, Rajarajan G, Thanikachalam V (2016) J Mol Struct 1105:225–237

    CAS  Google Scholar 

  6. Arulraj R, Sivakumar S, Thiruvalluvar A, Manimekalai A (2016) Chem Sci Rev Lett 5(18):99–105

    CAS  Google Scholar 

  7. Arulraj R, Sivakumar S, Thiruvalluvar A, Manimekalai A (2016) IUCrData 1:x160188

    CAS  Google Scholar 

  8. Arulraj R, Sivakumar S, Thiruvalluvar A, Kaur M, Jasinski JP (2016) IUCrData 1:x161580

    CAS  Google Scholar 

  9. Arulraj R, Sivakumar S, Thiruvalluvar A, Manimekalai A (2016) IUCrData 1:x161982

    CAS  Google Scholar 

  10. Rajkumar K, Sivakumar S, Arulraj R, Kaur M, Jasinski JP, Manimekalai A, Thiruvalluvar A (2018) Acta Cryst. E74:483–486

    Google Scholar 

  11. Arulraj R, Sivakumar S, Suresh S, Anitha K (2020) Spectrochimica Acta Part A 232:118166

    CAS  Google Scholar 

  12. Lee C, Yang W, Parr RG (1988) Phys. Rev. B 37:785–789

    CAS  Google Scholar 

  13. Arockia doss M, Savithiri S, Vembu S, Rajarajan G, Thanikachalam V (2015) Can Chem Trans 2:261–274

    Google Scholar 

  14. Savithiri S, Arockia doss M, Rajarajan G, Thanikachalam V (2014) J Mol Truct 1075:430–441

    CAS  Google Scholar 

  15. Arulraj R, Sivakumar S, Rajkumar K, Jasinski JP, Kaur M, Thiruvalluvar A (2020) J. Chem. Crystallogr. 50:41–51

    CAS  Google Scholar 

  16. Arulraj R, Sivakumar S, Kaur M, Thiruvalluvar A, Jasinski JP (2017) Acta Crystallogr., E 73:107–111

    CAS  Google Scholar 

  17. Sheldrick GM (2015) Acta Cryst. A 71:3–8

    Google Scholar 

  18. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J. Appl. Cryst. 39:453–457

    CAS  Google Scholar 

  19. Farrugia LJ (1999) J. Appl. Cryst. 32:837–838

    CAS  Google Scholar 

  20. Westrip SP (2010) J. Appl. Cryst. 43:920–925

    CAS  Google Scholar 

  21. Agilent (2014) CrysAlis PRO. Agilent Technologies, Agilent Technologies Ltd, Yarnton, England

    Google Scholar 

  22. Spek AL (2003) J Appl Cryst 36:7–13

    CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al- Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, CT

  24. Dennington II R, Keith T, Millam J (2007) Gauss View, Version 4.1.2, Semichem Inc., Shawnee Mission, KS

  25. Hartley D, Kidd H (eds) (1983) The Agrochemicals Handbook. Royal Society of Chemistry/Unwin Brothers Ltd., Old Woking Surrey, United Kingdom

    Google Scholar 

  26. Gerhartz W (1985) Ullmann’s Encyclopedia of Industrial Chemistry, 5th edn. VCH Publishers, Deerfield Beach FL

    Google Scholar 

  27. Habibi MH, Shojaee E, Ranjbar M, Memarian HR, Kanayama A, Suzuki T (2013) Spectrochim. Acta Part A 105:563–568

    CAS  Google Scholar 

  28. Turner MJ, MacKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackma MA (2017). Crystal Explorer Ver. 17.5. University of Western Avustralia, Pert

  29. Silverstein RM, Webster FX (1998) Spectroscopic Identification of Organic Compound. John Willey & Sons, New York

    Google Scholar 

  30. Colthup NB, Daly LH, Wiberley E (1964) Introduction to Infrared and Raman Spectroscopy. Academic Press, New York

    Google Scholar 

  31. Govindarajan M, Gansan K, Periandy S, Mohan S (2010) Spectrochim. Acta A 76:12–21

    CAS  Google Scholar 

  32. Srivastava AK, Kumar A, Misra N, Manjula PS, Sarojini BK, Narayana B (2016) J Mol Struct 1107:137–144

    CAS  Google Scholar 

  33. Kansız S, Tolan A, İçbudak H, Dege N (2019) J Mol Struct 1190:102–115

    Google Scholar 

  34. Kansız S, Dege N (2018) J Mol Struct 1173:42–51

    Google Scholar 

  35. Tankov I, Yankova R (2018) J Mol Liq 269(2018):529–539

    CAS  Google Scholar 

  36. Tankov I, Yankova R (2019) J. Mol. Liq. 278(2019):183–194

    CAS  Google Scholar 

  37. Tankov I, Yankova R (2019) J Mol.Struct 1179(2019):581–592

    CAS  Google Scholar 

  38. Tamer Ö (2017) J Mol Struct 1144:370–378

    CAS  Google Scholar 

  39. Demircioğlu Z, Ersanli CC, Kantar GK, Şaşmaz S (2019) J Mol Struct 1181:25–37

    Google Scholar 

  40. Ersanli CC, Kantar GK, Demircioğlu Z, Şaşmaz S (2018) Mol Cryst Liq Cryst 667(1):88–111

    CAS  Google Scholar 

  41. Pearson RG (1988) Inorg Chem 27:734–740

    CAS  Google Scholar 

  42. Sastri V, Perumareddi J (1997) Corrosion. 53:617–622

    CAS  Google Scholar 

  43. Gümüş MK, Kansız S, Aydemir E, Gorobets NY, Dege N (2018) J Mol Struct 1168:280–290

    Google Scholar 

  44. Şen F, Kansiz S, Uçar I (2017) Acta Cryst C 73:517–524

    Google Scholar 

  45. Ersanli CC, Kantar GK, Şaşmaz S (2017) J Mol Struct 1143:318–327

    CAS  Google Scholar 

  46. Asiri AM, Ersanlı CC, Şahin O, Arshad MN, Hameed SA (2016) J Mol Struct 1111:108–117

    CAS  Google Scholar 

  47. Tankov I, Yankova R (2019) J Mol Liq 277(2019):241–253

    CAS  Google Scholar 

  48. Tankov I, Yankova R (2019) Spectrochim Acta A 219(2019):53–67

    CAS  Google Scholar 

  49. Spackman MA, Byrom PG (1997) Chem Phys Lett 267:215–220

    CAS  Google Scholar 

  50. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    CAS  Google Scholar 

  51. Ilmi R, Kansız S, Dege N, Khan MS (2019) J Photochem. Photobiol A 377:268–281

    CAS  Google Scholar 

  52. Kansiz S, Almarhoon ZM, Dege N (2018) Acta Cryst E 74:217–220

    CAS  Google Scholar 

  53. Kansiz S, Macit M, Dege N, Tsapyuk GG (2018) Acta Cryst E 74:1513–1516

    CAS  Google Scholar 

  54. Kansiz S, Dege N, Topcu Y, Atalay Y, Gaidai SV (2018) Acta Cryst E 74:1700–1704

    CAS  Google Scholar 

  55. Kansiz S, Macit M, Dege N, Pavlenko VA (2018) Acta Cryst E 74:1887–1890

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arulraj Ramalingam or Sevgi Kansız.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, A., Kansız, S., Dege, N. et al. Synthesis, Crystal Structure, DFT Calculations and Hirshfeld Surface Analysis of 3-Chloro-2,6-Bis(4-Chlorophenyl)-3-Methylpiperidin-4-One. J Chem Crystallogr 51, 273–287 (2021). https://doi.org/10.1007/s10870-020-00852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00852-3

Keywords

Navigation