Skip to main content
Log in

Synthesis, Crystal Structure, and Catalytic Property of a Copper Coordination Compound Based on In Situ Generated 2-Hydroxynicotinic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The copper coordination complex [CuCl(2-OHNA)H2O]·H2O (1) was synthesized by the reaction of CuCl2·2H2O with in situ generated 2-hydroxynicotinic acid and its crystal structure was determined by single X-ray diffraction methods. It was further characterized by FT-IR spectroscopy, elemental analyses, and thermogravimetric analysis. Complex 1 crystallizes in monoclinic space group P21/c with a = 8.9797(13), b = 14.196(2), c = 7.0738(11) Å, β = 96.897(2), V = 895.2(2) Å3, Mr = 273.12, Dc = 2.027 g/cm3, and Z = 4. In the structure, complex 1 is linked into 2D sheets via intermolecular hydrogen bonding [N1–H1···O2 (−x+1, y − 1/2, − z+1/2); O5–H10···O2 (− x+1, y + 1/2, − z+1/2); O4–H9···O5 (x, y − 1, z); O4–H8···O5 (− x+2, y + 1, − z)]. The catalytic property of 1 was also investigated in the selective oxidation of benzyl-alkanes using TBHP as oxidant. Under optimized conditions, 1 exhibited high catalytic activity and selectivity toward the corresponding aryl ketones.

Graphic Abstract

The copper coordination complex [CuCl(2-OHNA)H2O]·H2O (1) was synthesized by the reaction of CuCl2·2H2O with in situ generated 2-hydroxynicotinic acid and the catalytic property of 1 was also investigated in the selective oxidation of benzyl-alkanes using TBHP as oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2

Similar content being viewed by others

References

  1. Zhang JP, Zhang YB, Lin JB, Chen XM (2012) Chem Rev 112:1001

    Article  CAS  Google Scholar 

  2. Yin Y, Tan Z, Hu L, Yu S, Liu J, Jiang G (2017) Chem Rev 117:4462

    Article  CAS  Google Scholar 

  3. Paskevicius M, Jepsen LH, Schouwink P, Černý R, Ravnsbæk DB, Filinchuk Y, Dornheim M, Besenbacher F, Jensen TR (2017) Chem Soc Rev 46:1565

    Article  CAS  Google Scholar 

  4. Zhao Y, Li Z, Sharma N, Song G, Eycken EVV (2016) Chem Commun 52:6395

    Article  CAS  Google Scholar 

  5. Teong SP, Yu D, Sum YN, Zhang Y (2016) Green Chem 18:3499

    Article  CAS  Google Scholar 

  6. Tirsoaga A, Cojocaru B, Teodorescu C, Vasiliu F, Grecu MN, Ghica D, Parvulescu VI, Garcia H (2016) J Catal 341:205

    Article  CAS  Google Scholar 

  7. Solomon EI, Randall DW, Glaser T (2000) Coord Chem Rev 200:595

    Article  Google Scholar 

  8. Cernak J, Orendac M, Potocnak I, Chomic J, Orendacova A, Skorsepa J, Feher A (2002) Coord Chem Rev 224:51

    Article  CAS  Google Scholar 

  9. Ma M, Noei H, Mienert B, Niesel J, Bill E, Muhler M, Fischer RA, Wang Y, Schatzschneider U, Metzler-Nolte N (2013) Chem Eur J 19:6785

    Article  CAS  Google Scholar 

  10. Singh SK, Srivastava AK, Srivastava K, Banerjee R, Prasad J (2017) J Mol Struct 1147:549

    Article  CAS  Google Scholar 

  11. Sheldrick GM (1996) SADABS. Göttingen University, Germany

    Google Scholar 

  12. Sheldrick GM (2015) Acta Cryst A 71:3

    Article  Google Scholar 

  13. Sheldrick GM (2015) Acta Cryst C 71:3

    Article  Google Scholar 

  14. Lü Y, Zhang X, Cui XB, Xu JQ (2018) Inorg Chem 57:11123

    Article  Google Scholar 

  15. Hu YY, Zhang TT, Zhang X, Zhao DC, Cui XB, Huo QS, Xu JQ (2016) Dalton Trans 45:2562

    Article  CAS  Google Scholar 

  16. Zhao DC, Hu YY, Ding H, Guo HY, Cui XB, Zhang X, Huo QS, Xu JQ (2015) Dalton Trans 44:8971

    Article  CAS  Google Scholar 

  17. Giri R, Shi BF, Engle KM, Maugel N, Yu JQ (2009) Chem Soc Rev 38:3242

    Article  CAS  Google Scholar 

  18. Díaz-Requejo MM, Pérez PJ (2008) Chem Rev 108:3379

    Article  Google Scholar 

  19. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F (2015) Chem Soc Rev 44:6804

    Article  CAS  Google Scholar 

  20. Zhao M, Ou S, Wu CD (2014) Acc Chem Res 47:1199

    Article  CAS  Google Scholar 

  21. Chen YF, Huang XQ, Feng X, Li JK, Huang YY, Zhao JS, Guo YX, Dong XM, Han RD, Qi PF, Han YZ, Li HW, Hu CW, Wang B (2014) Chem Commun 50:8374

    Article  CAS  Google Scholar 

  22. He QT, Li XP, Chen LF, Zhang L, Wang W, Su CY (2013) ACS Catal 3:1

    Article  CAS  Google Scholar 

  23. Zhao Q, Zhang P, Antonietti M, Yuan J (2012) J Am Chem Soc 134:11852

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shandong Province (ZR2017LB002) and project (2018HX207), Taian Municipal Science and Technology Project (2015GX2057) and the Talent Introduction Project of Taishan University (Y2015-1-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Kun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, RT., Li, JK., Wei, CP. et al. Synthesis, Crystal Structure, and Catalytic Property of a Copper Coordination Compound Based on In Situ Generated 2-Hydroxynicotinic Acid. J Chem Crystallogr 50, 234–240 (2020). https://doi.org/10.1007/s10870-019-00818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00818-0

Keywords

Navigation