Skip to main content
Log in

Synthesis, Crystal Structures and DFT Calculations of Two New Phenol-Based Ester Derivatives

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two new phenol-based ester derivatives, namely C13H9ClO2 (I) and C20H14O4 (II) have been synthesized and characterized by NMR spectroscopy, single crystal X-ray diffraction and density functional theory (DFT) geometry optimization and molecular orbital calculations. Compound I crystallizes in the orthorhombic space group Pca2(1),with a = 7.6297 (5) Å, b = 5.5875 (3) Å, c = 26.1624 (12) Å, α = β = γ = 90°, V = 1115.33(11) Å3 and Z = 4. Compound II crystallizes in the triclinic space group P \(\bar 1\), with a = 5.7970 (4) Å, b = 8.1366 (8) Å, c = 8.8057 (9) Å, α = 83.246 (8)°, β = 72.138 (8)°, γ = 76.696 (8)°, V = 384.22 (6) Å3 and Z = 1. Geometry optimization calculations for each compound is consistent with these observations. A comparison of the dihedral angles between mean planes of the benzene rings in the crystal with the DFT theoretical calculations and weak intermolecular hydrogen bond interactions has been included for each molecule. Electronic transitions have been predicted by DFT Molecular Orbital calculations and compared with experimental absorption spectra.

Graphical Abstract

Synthesis, crystal structures, DFT geometry optimization and molecular orbital surface calculations of two new phenol-based ester derivatives of 4-chlorophenyl benzoate, (I): C13H9ClO2 and 1,4-phenylene dibenzoate, (II): C20H14O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang W, Pei J, Chen B, Pei W, Ye X (1996) Tetrahedron 52:10131–10136

    Article  CAS  Google Scholar 

  2. Gandhi SS, Bell KL, Gibson MS (1995) Tetrahedron 51:13301–13308

    Article  CAS  Google Scholar 

  3. Rather JB, Reid EE (1919) J Am Chem Soc 41:75–83

    Article  CAS  Google Scholar 

  4. Literak J, Dostalova A, Klan P (2006) J Org Chem 71:713–723

    Article  CAS  Google Scholar 

  5. Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G (2002) II Farmaco 57:101–107

    Article  CAS  Google Scholar 

  6. Wiesner J, Kettler K, Jomaa H, Schlitzer M (2002) Bioorg Med Chem Lett 12:543–545

    Article  CAS  Google Scholar 

  7. Hsieh HP, Liou JP, Lin YT, Mahindroo N, Chang JY, Yang YN, Chern SS, Tan UK, Chang CW, Chen TW, Lin CH, Chang YY, Wang CC (2003) Bioorg Med Chem Lett 13:101–105

    Article  CAS  Google Scholar 

  8. Belluti F, Bartolini M, Bottegoni G, Bisi A, Cavalli A, Andrisano V, Rampa A (2011) Eur J Med Chem 46:1682–1693

    Article  CAS  Google Scholar 

  9. Wyatt PG, Bethell RC, Cammack N, Charon D, Dodic N, Dumaitre B, Evans DN, Green DVS, Hopewell PL, Humber DC, Lamont RB, Orr DC, Plested SJ, Ryan DM, Sollis SL, Storer R, Weingarten GG (1995) J Med Chem 38:1657–1667

    Article  CAS  Google Scholar 

  10. Fenton H, Tidmash IS, Ward MD (2010) Dalton Trans 39:3805–3815

    Article  CAS  Google Scholar 

  11. Vigato PA, Tamburini S, Bartolo L (2007) Coord Chem Rev 251:1311–1492

    Article  CAS  Google Scholar 

  12. Gupta SK, Hitchock PB, Argal GS (2008) Inorg Chim Acta 361:2139–2146

    Article  CAS  Google Scholar 

  13. Gupta SK, Hitchock PB, Kushwah YS, Argal GS (2007) Inorg Chim Acta 360:2147–2152

    Google Scholar 

  14. Adams JM, Morsi SE (1976) Acta Cryst B32:1345–1347

    Article  CAS  Google Scholar 

  15. Gowda BT, Foro S, Babitha KS, Fuess H (2008) Acta Cryst E64:o844

    Google Scholar 

  16. Moreno-Fuquen R, Rendon M, Kennedy AR (2014) Acta Cryst E70:o194

    Google Scholar 

  17. Gowda BT, Tokarcik M, Kozisek J, Babitha KS, Fuess H (2008) Acta Cryst E64:o1280

    Google Scholar 

  18. Mahendra M, Doreswamy DH, Sridhar MA, Prasad JS, Khanum SA, Shashikanth S, Venu TD (2005) J Chem Cryst 35:463–467

    Article  CAS  Google Scholar 

  19. Begum B, Al-Ghorbani M, Sharma S, Gupta VK, Khanum SA (2013) Acta Cryst E69:o999–o1000

    Google Scholar 

  20. Fun H, Shahani T, Garudachari B, Isloor AM, Satyganarayan MN (2011) Acta Cryst E67:o1802

    Google Scholar 

  21. Allen FH (2002) Acta Cryst B58:380–388

    Article  CAS  Google Scholar 

  22. Das P, Biswas AN, Upreti S, Mandal PK, Bandyopadhyay P (2008) Acta Cryst E64:o676

    Google Scholar 

  23. Tamura K, Hori K (2000) Bull Chem Soc Jpn 73:843–850

    Article  CAS  Google Scholar 

  24. Tamura K, Uchida H, Hori K (1999) Mol Cryst Liq Cryst 330:201–206

    Article  Google Scholar 

  25. Hori K, Kerbo C, Okamoto H, Takenaka S (2001) Mol Cryst Liq Cryst 365:617–637

    Article  CAS  Google Scholar 

  26. Das P, Biswas AN, Acharya S, Chaudhury A, Bandyopadhyay P, Mandal PK, Upreti S (2009) Mol Cryst Liq Cryst 501:53–61

    Article  Google Scholar 

  27. Das P, Biswas AN, Acharya S, Choudhary A, Bandyopadhyay P, Mandal PK (2008) Liq Cryst 35:895–903

    Article  CAS  Google Scholar 

  28. Gupta SK, Hitchock PB, Kushwah YS (2002) Polyhedron 21:1787–1793

    Article  CAS  Google Scholar 

  29. Gupta SK, Anjana C, Sen N, Jasinski JP, Golen JA (2012) J Chem Crystallogr 45:193–201

    Google Scholar 

  30. Armarego WLF, Perrin DD (1997) Purification of labortory chemicals, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  31. Agilent (2014) CrysAlisPRO. Agilent technologies, Yarnton

    Google Scholar 

  32. Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786–790

    Article  CAS  Google Scholar 

  33. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  34. Bruker (2006) SHELXTL. Bruker AXS Inc, Madison

    Google Scholar 

  35. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–19

    Article  Google Scholar 

  36. Schmidt JR, Polik WF(2007) Web MO Pro, version 8.0.01e; WebMO, LLC: Holland. http://www.webmo.net

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomerym JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov JB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  38. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  40. Hehre WJ, Random L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  41. Pearl GM, Zerner MC, Broo A, McKelvey J (1998) J Compt Chem 19:781–796

    Article  CAS  Google Scholar 

  42. Guillaumont D, Nakamura S (2000) Dyes Pigm 46:85–92

    Article  CAS  Google Scholar 

  43. Holland JP, Barnard PJ, Bayly SR, Dilworth JR, Green JC (2009) Inorg Chim Acta 362:402–406

    Article  CAS  Google Scholar 

  44. Origin 8.0, OriginLab (2007) Northampton, MA

  45. Dewar MJS, Hart LS (1970) Tetrahedron 26:973–1000

    Article  CAS  Google Scholar 

  46. Murashige R, Hayashi Y, Ohmori S, Torii A, Aizu Y, Muto Y, Murai Y, Oda Y, Hashimoto M (2011) Tetrahedron 67:641–649

    Article  CAS  Google Scholar 

  47. Adogla EA, Janser RFJ, Fairbanks SS, Vortolomei CM, Meka RK, Janser I (2012) Tetrahedron Lett 53:11–14

    Article  CAS  Google Scholar 

  48. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  49. Etter MC, Macdonald JC, Bernstein B (1990) Acta Crystallogr Sec B 46:256–262

    Article  Google Scholar 

  50. Pulkkinen JT, Laatikainen R, Ahlgren MJ, Perakyla M, Vepsalainen JJ (2000) J Chem Soc Perkin Trans 2:777–784

    Article  Google Scholar 

Download references

Acknowledgments

SKG thanks UGC (University Grants Commission, New Delhi) for financial assistance [Grant No. F.37-500/2009 (SR)]. JPJ acknowledges the NSF–MRI (Grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganaie, J.A., Kumar, J., Butcher, R.J. et al. Synthesis, Crystal Structures and DFT Calculations of Two New Phenol-Based Ester Derivatives. J Chem Crystallogr 46, 93–104 (2016). https://doi.org/10.1007/s10870-016-0632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0632-4

Keywords

Navigation