Skip to main content

Advertisement

Log in

A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A biomimetic minimalist model membrane was used to study the mechanism and kinetics of cell-free in vitro HIV-1 Gag budding from a giant unilamellar vesicle (GUV). Real-time interaction of Gag, RNA, and lipid, leading to the formation of mini-vesicles, was measured using confocal microscopy. Gag forms resolution-limited punctae on the GUV lipid membrane. Introduction of the Gag and urea to a GUV solution containing RNA led to the budding of mini-vesicles on the inside surface of the GUV. The GUV diameter showed a linear decrease in time due to bud formation. Both bud formation and decrease in GUV size were proportional to Gag concentration. In the absence of RNA, addition of urea to GUVs incubated with Gag also resulted in subvesicle formation. These observations suggest the possibility that clustering of GAG proteins leads to membrane invagination even in the absence of host cell proteins. The method presented here is promising, and allows for systematic study of the dynamics of assembly of immature HIV and help classify the hierarchy of factors that impact the Gag protein initiated assembly of retroviruses such as HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rein, A., Datta, S.A.K., Jones, C.P., Musier-Forsyth, K.: Diverse interactions of retroviral Gag proteins with RNAs. Trends Biochem Sci 36(7), 373–380 (2011)

    Google Scholar 

  2. Chukkapalli, V., Ono, A.: Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol 410(4), 512–524 (2011)

    Article  Google Scholar 

  3. Jouvenet, N., Simon, S.M., Bieniasz, P.D.: Visualizing HIV-1 assembly. J Mol Biol 410(4), 501–511 (2011). doi:10.1016/j.jmb.2011.04.062

    Article  Google Scholar 

  4. Swanstrom, R., Wills, J.W.: Synthesis, assembly, and processing of viral proteins. Retroviruses (Coffin, J. M., Hughes, S. H. and Varmus, H. E., eds), 72 (1997).

  5. Ganser-Pornillos, B.K., Yeager, M., Sundquist, W.I.: The structural biology of HIV assembly. Curr Opin Struct Biol 18(2), 203–217 (2008)

    Article  Google Scholar 

  6. Briggs, J.A., Kräusslich, H.-G.: The molecular architecture of HIV. J Mol Biol 410(4), 491–500 (2011)

    Article  Google Scholar 

  7. Datta, S.A.K., Heinrich, F., Raghunandan, S., Krueger, S., Curtis, J.E., Rein, A., Nanda, H.: HIV-1 Gag extension: conformational changes require simultaneous interaction with membrane and nucleic acid. J Mol Biol 406(2), 205–214 (2011)

    Article  Google Scholar 

  8. Gelderblom, H.R., Bauer, P.G., Özel, M., Höglund, P., Niedrig, M., Renz, H., Morath, B., Lundquist, P., Nilsson, Å., Mattow, J., Grund, C., Pauli, G.: Membrane Interactions of HIV. Wiley-Liss, New York (1992)

    Google Scholar 

  9. Henne, W.M., Buchkovich, N.J., Emr, S.D.: The ESCRT pathway. Dev Cell 21(1), 77–91 (2011)

    Article  Google Scholar 

  10. Carlson, L.A., Hurley, J.H.: In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci U.S.A. 109(42), 16928–16933 (2012). doi:10.1073/pnas.1211759109

  11. Wollert, T., Wunder, C., Lippincott-Schwartz, J., Hurley, J.H.: Membrane scission by the ESCRT-III complex. Nature 458(7235), 172–177 (2009)

    Article  ADS  Google Scholar 

  12. Hill, C.P., Worthylake, D., Bancroft, D.P., Christensen, A.M., Sundquist, W.I.: Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci U.S.A. 93(7), 3099–3104 (1996)

  13. Ono, A., Freed, E.O.: Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J Virol 73(5), 4136–4144 (1999)

    Google Scholar 

  14. Wright, E.R., Schooler, J.B., Ding, H.J., Kieffer, C., Fillmore, C., Sundquist, W.I., Jensen, G.J.: Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26(8), 2218–2226 (2007)

    Article  Google Scholar 

  15. Fuller, S.D., Wilk, T., Gowen, B.E., Kräusslich, H.-G., Vogt, V.M.: Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol 7(10), 729–738 (1997)

    Article  Google Scholar 

  16. Briggs, J.A.G., Riches, J.D., Glass, B., Bartonova, V., Zanetti, G., Kräusslich, H.G.: Structure and assembly of immature HIV. Proc Natl Acad Sci U.S.A. (2009). doi:10.1073/pnas.0903535106

  17. Spearman, P., Horton, R., Ratner, L., Kuli-Zade, I.: Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 71(9), 6582–6592 (1997)

    Google Scholar 

  18. Campbell, S., Rein, A.: In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J Virol 73(3), 2270–2279 (1999)

    Google Scholar 

  19. Benjamin, J., Ganser-Pornillos, B.K., Tivol, W.F., Sundquist, W.I., Jensen, G.J.: Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography. J Mol Biol 346(2), 577–588 (2005)

    Article  Google Scholar 

  20. O’Carroll, I.P., Soheilian, F., Kamata, A., Nagashima, K., Rein, A.: Elements in HIV-1 Gag contributing to virus particle assembly. Virus Res 171(2), 341–345 (2013)

    Article  Google Scholar 

  21. Jouvenet, N., Bieniasz, P.D., Simon, S.M.: Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454(7201), 236–240 (2008)

    Article  ADS  Google Scholar 

  22. Ivanchenko, S., Godinez, W.J., Lampe, M., Kräusslich, H.-G., Eils, R., Rohr, K., Bräuchle, C., Müller, B., Lamb, D.C.: Dynamics of HIV-1 assembly and release. PLoS Pathog 5(11), e1000652 (2009)

    Article  Google Scholar 

  23. Gladnikoff, M., Rousso, I.: Directly monitoring individual retrovirus budding events using atomic force microscopy. Biophys J 94(1), 320–326 (2008)

    Article  Google Scholar 

  24. Ott, D.E.: Cellular proteins in HIV virions. Rev Med Virol 7(3), 167–180 (1997)

    Article  MathSciNet  Google Scholar 

  25. Vieweger, M., Goicochea, N., Koh, E.S., Dragnea, B.: photothermal imaging and measurement of protein shell stoichiometry of single HIV-1 Gag virus-like nanoparticles. ACS Nano 5(9), 7324–7333 (2011)

    Article  Google Scholar 

  26. Goicochea, N.L., Datta, S.A., Ayaluru, M., Kao, C., Rein, A., Dragnea, B.: Structure and stoichiometry of template-directed recombinant HIV-1 Gag particles. J Mol Biol 410(4), 667–680 (2011)

    Article  Google Scholar 

  27. Lingappa, J.R., Hill, R.L., Wong, M.L., Hegde, R.S.: A multistep, ATP-dependent pathway for assembly of human immunodeficiency virus capsids in a cell-free system. J Cell Biol 136(3), 567–581 (1997). doi:10.1083/jcb.136.3.567

    Article  Google Scholar 

  28. Sakalian, M., Parker, S.D., Weldon, R.A., Hunter, E.: Synthesis and assembly of retrovirus Gag precursors into immature capsids in vitro. J Virol 70(6), 3706–3715 (1996)

    Google Scholar 

  29. Spearman, P., Ratner, L.: Human immunodeficiency virus type 1 capsid formation in reticulocyte lysates. J Virol 70(11), 8187–8194 (1996)

    Google Scholar 

  30. Weldon, R.A., Parker, W.B., Sakalian, M., Hunter, E.: Type d retrovirus capsid assembly and release are active events requiring ATP. J Virol 72(4), 3098–3106 (1998)

    Google Scholar 

  31. Bryant, M., Ratner, L.: Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci U.S.A. 87(2), 523–527 (1990)

  32. Copeland, N.G., Jenkins, N.A., Nexø, B., Schultz, A.M., Rein, A., Mikkelsen, T., Jørgensen, P.: Poorly expressed endogenous ecotropic provirus of DBA/2 mice encodes a mutant Pr65gag protein that is not myristylated. J Virol 62(2), 479–487 (1988)

    Google Scholar 

  33. Rein, A., McClure, M.R., Rice, N.R., Luftig, R.B., Schultz, A.M.: Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus. Proc Natl Acad Sci U.S.A. 83(19), 7246–7250 (1986)

  34. Saad, J.S., Miller, J., Tai, J., Kim, A., Ghanam, R.H., Summers, M.F.: Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U.S.A. 103(30), 11364–11369 (2006). doi:10.1073/pnas.0602818103

  35. Ono, A., Ablan, S.D., Lockett, S.J., Nagashima, K., Freed, E.O.: Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U.S.A. 101(41), 14889–14894 (2004). doi:10.1073/pnas.0405596101

  36. Ursell, T.S., Klug, W.S., Phillips, R.: Morphology and interaction between lipid domains. Proc Natl Acad Sci U.S.A. 106(32), 13301–13306 (2009)

  37. Saffman, P.G., Delbrück, M.: Brownian motion in biological membranes. Proc Natl Acad Sci U.S.A. 72(8), 3111–3113 (1975)

  38. Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R.S., Kondo, J., Fujiwara, T.: Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34(1), 351–378 (2005). doi:10.1146/annurev.biophys.34.040204.144637

    Article  Google Scholar 

  39. Amarasinghe, G.K., De Guzman, R.N., Turner, R.B., Chancellor, K.J., Wu, Z.R., Summers, M.F.: NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J Mol Biol 301(2), 491–511 (2000)

    Article  Google Scholar 

  40. Datta, S.A., Curtis, J.E., Ratcliff, W., Clark, P.K., Crist, R.M., Lebowitz, J., Krueger, S., Rein, A.: Conformation of the HIV-1 Gag protein in solution. J Mol Biol 365(3), 812–824 (2007)

    Article  Google Scholar 

  41. de Marco, A., Müller, B., Glass, B., Riches, J.D., Kräusslich, H.-G., Briggs, J.A.G.: Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6(11), e1001215 (2010). doi:10.1371/journal.ppat.1001215

    Article  Google Scholar 

  42. Carlson, L.-A., de Marco, A., Oberwinkler, H., Habermann, A., Briggs, J.A.G., Kräusslich, H.-G., Grünewald, K.: Cryo-electron tomography of native HIV-1 budding sites. PLoS Pathog 6(11), e1001173 (2010). doi:10.1371/journal.ppat.1001173

    Article  Google Scholar 

  43. Wollert, T., Hurley, J.H.: Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464(7290), 864–869 (2010)

    Article  ADS  Google Scholar 

  44. Huang, M., Orenstein, J.M., Martin, M.A., Freed, E.O.: p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69(11), 6810–6818 (1995)

    Google Scholar 

  45. Bieniasz, P.D.: Late budding domains and host proteins in enveloped virus release. Virology 344(1), 55–63 (2006)

    Article  Google Scholar 

  46. Chen, B.J., Lamb, R.A.: Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372(2), 221–232 (2008)

    Article  Google Scholar 

  47. Teis, D., Saksena, S., Emr, S.D.: SnapShot: the ESCRT machinery. Cell 137(1), 182–182.e181 (2009)

    Article  Google Scholar 

  48. Ku, P.-I., Bendjennat, M., Ballew, J., Landesman, M.B., Saffarian, S.: ALIX is recruited temporarily into HIV-1 budding sites at the end of Gag assembly. PLoS One 9(5), e96950 (2014)

    Article  Google Scholar 

  49. Römer, W., Berland, L., Chambon, V., Gaus, K., Windschiegl, B., Tenza, D., Aly, M.R.E., Fraisier, V., Florent, J.-C., Perrais, D., Lamaze, C., Raposo, G., Steinem, C., Sens, P., Bassereau, P., Johannes, L.: Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450(7170), 670–675 (2007)

    Article  ADS  Google Scholar 

  50. Różycki, B., Boura, E., Hurley, J.H., Hummer, G.: Membrane-elasticity model of coatless vesicle budding induced by ESCRT complexes. PLoS Comput Biol 8(10), e1002736 (2012)

    Article  Google Scholar 

  51. Perez-Caballero, D., Hatziioannou, T., Martin-Serrano, J., Bieniasz, P.D.: Human immunodeficiency virus type 1 matrix inhibits and confers cooperativity on Gag precursor-membrane interactions. J Cell Biol 78(17), 9560–9563 (2004). doi:10.1128/jvi. 78.17.9560-9563.2004

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant support from UCLABs Fund (D.G., S.G., J.X., U.M.), from the National Science Foundation through Grant No. DMR-13-10687 (RZ) and the UCR Chancellor's Strategic Fund and Collaborative Research Seed Grant (D.G., U.M., R.Z., S.G, I-C.H, A.L.N. R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Mohideen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 927 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, D., Gupta, S., Xu, J. et al. A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding. J Biol Phys 41, 135–149 (2015). https://doi.org/10.1007/s10867-014-9370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9370-z

Keywords

Navigation