Skip to main content
Log in

Effect of hydrophobic environments on the hypothesized liquid-liquid critical point of water

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The complex behavior of liquid water, along with its anomalies and their crucial role in the existence of life, continue to attract the attention of researchers. The anomalous behavior of water is more pronounced at subfreezing temperatures and numerous theoretical and experimental studies are directed towards developing a coherent thermodynamic and dynamic framework for understanding supercooled water. The existence of a liquid–liquid critical point in the deep supercooled region has been related to the anomalous behavior of water. However, the experimental study of supercooled water at very low temperatures is hampered by the homogeneous nucleation of the crystal. Recently, water confined in nanoscopic structures or in solutions has attracted interest because nucleation can be delayed. These systems have a tremendous relevance also for current biological advances; e.g., supercooled water is often confined in cell membranes and acts as a solvent for biological molecules. In particular, considerable attention has been recently devoted to understanding hydrophobic interactions or the behavior of water in the presence of apolar interfaces due to their fundamental role in self-assembly of micelles, membrane formation and protein folding. This article reviews and compares two very recent computational works aimed at elucidating the changes in the thermodynamic behavior in the supercooled region and the liquid–liquid critical point phenomenon for water in contact with hydrophobic environments. The results are also compared to previous reports for water in hydrophobic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Debenedetti, P.G.: Supercooled and glassy water. J. Phys., Condens. Matter 15, R1669–R1726 (2003)

    Article  ADS  Google Scholar 

  2. Franks, F.: Water: A Matrix for Life, 2nd edn. Royal Society of Chemistry, Cambridge (2000)

    Google Scholar 

  3. Stanley, H.E.: A polychromatic correlated-site percolation problem with possible relevance to the unusual behavior of supercooled H2O and D2O. J. Phys. A 12, L329–L337 (1979)

    Article  ADS  Google Scholar 

  4. Angell, C.A., Sichina, W.J., Oguni, M.: Heat capacity of water at extremes of supercooling and superheating. J. Phys. Chem. 86, 998–1002 (1982)

    Article  Google Scholar 

  5. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 66–69 (1967)

    Article  Google Scholar 

  6. Poole, P.H., Sciortino, F., Essmann, U., Stanley, H.E.: Phase behaviour of metastable water. Nature 360, 324–328 (1992)

    Article  ADS  Google Scholar 

  7. Tanaka, H.: Phase behaviors of supercooled water: reconciling a critical point of amorphous ices with spinodal instability. J. Chem. Phys. 105, 5099–5111 (1996)

    Article  ADS  Google Scholar 

  8. Poole, P.H., Saika-Voivod, I., Sciortino, F.: Density minimum and liquid-liquid phase transition. J. Phys., Condens. Matter 17, L431–L437 (2005)

    Article  ADS  Google Scholar 

  9. Harrington, S., Poole, P.H., Sciortino, F., Stanley, H.E.: Equation of state of supercooled SPC/E water. J. Chem. Phys. 107, 7443–7450 (1997)

    Article  ADS  Google Scholar 

  10. Jedlovszky, P., Vallauri, R.: Liquid-vapor and liquid-liquid phase equilibria of the Brodholt-Sampoli-Vallauri polarizable water model. J. Chem. Phys. 122, 81101 (2005)

    Article  Google Scholar 

  11. Paschek, D., Rüppert, A., Geiger, A.: Thermodynamic and structural characterization of the transformation from a metastable low-density to a very high-density form of supercooled TIP4P-Ew model water. ChemPhysChem 9, 2737–2741 (2008)

    Article  Google Scholar 

  12. Liu, Y., Panagiotopoulos, A.Z., Debenedetti, P.G.: Low-temperature fluid-phase behavior of ST2 water. J. Chem. Phys. 131, 104508 (2009)

    Article  ADS  Google Scholar 

  13. Abascal, J.L.F., Vega, C.: Widom line and the liquid-liquid critical point for the TIP4P/2005 water model. J. Chem. Phys. 133, 234502 (2010)

    Article  ADS  Google Scholar 

  14. Franzese, G., Marqués, M.I., Stanley, H.E.: Intramolecular coupling as a mechanism for a liquid-liquid phase transition. Phys. Rev. E 67, 011103 (2003)

    Article  ADS  Google Scholar 

  15. Chen, S.-H., Loong, C.K.: Neutron scattering investigations of proton dynamics of water and hydroxyl species in confined geometries. Nucl. Eng. Technol. 38, 201–224 (2006)

    Google Scholar 

  16. Liu, D., Zhang, Y., Liu, Y., Wu, J., Chen, C.-C., Mou, C.-Y., Chen, S.-H.: Density measurement of 1-D confined water by small angle neutron scattering method: pore size and hydration level dependences. J. Phys. Chem B 112, 4309–4312 (2008)

    Article  Google Scholar 

  17. Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Liu, L., Mou, C.-Y., Chen, S.-H.: Dynamical properties of confined supercooled water: an NMR study. J. Phys., Condens. Matter 18, S2285–S2297 (2006)

    Article  ADS  Google Scholar 

  18. Starr, F.W., Nielsen, J.K., Stanley, H.E.: Fast and slow dynamics of hydrogen bonds in liquid water. Phys. Rev. Lett. 82, 2294–2297 (1999)

    Article  ADS  Google Scholar 

  19. Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Majolino, D., Venuti, V., Liu, L., Mou, C.-Y., Chen, S.-H.: Evidence of the existence of the low-density liquid phase in supercooled, confined water. Proc. Natl. Acad. Sci. USA 104, 424–428 (2007)

    Article  ADS  Google Scholar 

  20. Han, S., Kumar, P., Stanley, H.E.: Absence of a diffusion anomaly of water in the direction perpendicular to hydrophobic nanoconfining walls. Phys. Rev. E 77, 030201 (2008)

    Article  ADS  Google Scholar 

  21. Giovambattista, N., Rossky, P.J., Debenedetti, P.: Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates. Phys. Rev. E 73, 041604 (2006)

    Article  ADS  Google Scholar 

  22. Giovambattista, N., Debenedetti, P., Rossky, P.J.: Effect of surface polarity on water contact angle and interfacial hydration structure. J. Phys. Chem. B. 111, 9581–9587 (2007)

    Article  Google Scholar 

  23. Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005)

    Article  ADS  Google Scholar 

  24. Joseph, S., Aluru, N.R.: Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys. Rev. Lett. 101, 064502 (2008)

    Article  ADS  Google Scholar 

  25. Strekalova, E.G., Mazza, M.G., Stanley, H.E., Franzese, G.: Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement. Phys. Rev. Lett. 106, 145701 (2011)

    Article  ADS  Google Scholar 

  26. Gallo, P., Rovere, M.: Structural properties and liquid spinodal of water confined in a hydrophobic environment. Phys. Rev. E 76, 061202 (2007)

    Article  ADS  Google Scholar 

  27. Gallo, P., Rovere, M., Chen, S.-H.: Dynamic crossover in supercooled confined water: understanding bulk properties through confinement. J. Phys. Chem. Lett. 1, 729–733 (2010)

    Article  Google Scholar 

  28. Kumar, P., Buldyrev, S.V., Starr, F.W., Giovambattista, N., Stanley, H.E.: Thermodynamics, structure, and dynamics of water confined between hydrophobic plates. Phys. Rev. E 72, 051503 (2005)

    Article  ADS  Google Scholar 

  29. Kumar, P., Yan, Z., Xu, L., Mazza, M.G., Buldyrev, S.V., Chen, S.-H., Sastry, S., Stanley, H.E.: Glass transition in biomolecules and the liquid-liquid critical point of water. Phys. Rev. Lett. 97, 177802 (2006)

    Article  ADS  Google Scholar 

  30. Bellissent-Funel, M.-C., Chen, S.H., Zanotti, J.-M.: Single-particle dynamics of water molecules in confined space. Phys. Rev. E 51, 4558–4569 (1995)

    Article  ADS  Google Scholar 

  31. Swenson, J., Jansson, H., Bergman, R.: Relaxation processes in supercooled confined water and implications for protein dynamics. Phys. Rev. Lett. 96, 247802 (2006)

    Article  ADS  Google Scholar 

  32. Mallamace, F., Broccio, M., Corsaro, C., Faraone, A., Wanderlingh, U., Liu, L., Mou, C.-Y., Chen, S. H.: The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results. J. Chem. Phys. 124, 161102 (2006)

    Article  ADS  Google Scholar 

  33. Angell, C.A.: Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582–587 (2008)

    Article  Google Scholar 

  34. Pittia, P., Cesàro, A.: Water biophysics: how water interacts with biomolecules. Food Biophys. 6, 183–185 (2011)

    Article  Google Scholar 

  35. Oguni, M., Angell, C.A.: Hydrophobic and hydrophilic solute effects on the homogeneous nucleation temperature of ice from aqueous solutions. J. Phys. Chem. 87, 1848–1851 (1983)

    Article  Google Scholar 

  36. Corradini, D., Rovere, M., Gallo, P.: A route to explain water anomalies from results on an aqueous solution of salt. J. Chem. Phys. 132, 134508 (2010)

    Article  ADS  Google Scholar 

  37. Corradini, D., Rovere, M., Gallo P.: Structural properties of high and low density water in a supercooled aqueous solution of salt. J. Phys. Chem. B 115, 1461–1468 (2011)

    Article  Google Scholar 

  38. Mishima, O.: Application of polyamorphism in water to spontaneous crystallization of emulsified LiClH 2 O. J. Chem. Phys. 123, 154506 (2005)

    Article  ADS  Google Scholar 

  39. Mishima, O.: Phase separation in dilute LiClH 2 O solution related to the polyamorphism of liquid water. J. Chem. Phys. 126, 244507 (2007)

    Article  ADS  Google Scholar 

  40. Huang, C., Weiss, T.M., Nordlund, D., Wikfeldt, K.T., Pettersson, L.G.M., Nilsson, A.: Increasing correlation length in bulk supercooled H 2 O, D 2 O, and NaCl solution determined from small angle x-ray scattering. J. Chem. Phys. 133, 134504 (2010)

    Article  ADS  Google Scholar 

  41. Corradini, D., Gallo, P., Rovere, M.: Thermodynamic behavior and structural properties of an aqueous sodium chloride solution upon supercooling. J. Chem. Phys. 128, 244508 (2008)

    Article  ADS  Google Scholar 

  42. Corradini, D., Gallo, P., Rovere, M.: Effect of concentration on the thermodynamics of sodium chloride aqueous solutions in the supercooled regime. J. Chem. Phys. 130, 154511 (2009)

    Article  ADS  Google Scholar 

  43. Corradini, D., Gallo, P., Rovere, M.: Molecular dynamics studies on the thermodynamics of the supercooled sodium chloride aqueous solution at different concentrations. J. Phys., Condens. Matter 22, 284104 (2010)

    Article  Google Scholar 

  44. Corradini, D., Buldyrev, S.V., Gallo, P., Stanley, H.E.: Effect of hydrophobic solutes on the liquid-liquid critical point. Phys. Rev. E. 81 061504 (2010)

    Article  ADS  Google Scholar 

  45. Chatterjee, S., Debenedetti, P.G.: Fluid-phase behavior of binary mixtures in which one component can have two critical points. J. Chem. Phys. 124, 154503 (2006)

    Article  ADS  Google Scholar 

  46. Magno, A., Gallo, P.: Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J. Phys. Chem. Lett. 2, 977–982 (2011)

    Article  Google Scholar 

  47. Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008)

    Article  Google Scholar 

  48. Ball, P.: Life’s Matrix: A Biography of Water. Farrar, Straus, and Giroux, New York (2000)

    Google Scholar 

  49. Granick, S., Bae S.C.: A curious antipathy for water. Science 322, 1477–1478 (2008)

    Article  Google Scholar 

  50. Poole, P.H., Sciortino, F., Essmann, U., Stanley, H.E.: The spinodal of liquid water. Phys. Rev. E 48, 3799–3817 (1993)

    Article  ADS  Google Scholar 

  51. Xu, L., Kumar, P., Buldyrev, S.V., Chen, S.-H., Poole, P.H., Sciortino, F., Stanley, H.E.: Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid critical point. Proc. Natl. Acad. Sci. USA 102, 16558–16562 (2005)

    Article  ADS  Google Scholar 

  52. Xu, L., Buldyrev, S.V., Angell, C.A., Stanley, H.E.: Thermodynamics and dynamics of the two-scale spherically symmetric Jagla ramp model of anomalous liquids. Phys. Rev. E 74, 031108 (2006)

    Article  ADS  Google Scholar 

  53. Stokely, K., Mazza, M.G., Stanley, H.E., Franzese, G.: Effect of hydrogen bond cooperativity on the behavior of water. Proc. Natl. Acad. Sci. USA 107, 1301–1306 (2010)

    Article  ADS  Google Scholar 

  54. Urbic, T., Vlachy, V., Pizio, O., Dill, K.A.: Water-like fluid in the presence of Lennard-Jones obstacles: predictions of an associative replica Ornstein-Zernike theory. J. Mol. Liq. 112, 71 (2004)

    Article  Google Scholar 

  55. Zhang, Y., Liu, K.-H., Lagi, M., Liu, D., Littrell, K.C., Mou, C.-Y., Chen, S.-H.: Absence of the density minimum of supercooled water in hydrophobic confinement. J. Phys. Chem. B 113, 5007 (2009)

    Article  Google Scholar 

  56. Cataudella, V., Franzese, G., Nicodemi, M., Scala, A., Coniglio, A.: Percolation and cluster Monte Carlo dynamics for spin models. Phys. Rev. E 54, 175–189 (1996)

    Article  ADS  Google Scholar 

  57. Franzese, G., Coniglio, A.: Phase transitions in the Potts spin-glass model. Phys. Rev. E 58, 2753–2759 (1998)

    Article  ADS  Google Scholar 

  58. Wolff, U.: Collective Monte Carlo updating for spin systems. Phys. Rev. Lett. 62, 361–364 (1989)

    Article  ADS  Google Scholar 

  59. Mazza, M.G., Stokely, K., Pagnotta, S.E., Bruni, F., Stanley, H.E., Franzese, G.: Two dynamic crossovers in protein hydration water. Proc. Natl. Acad. Sciences (2011). doi:10.1073/pnas.1104299108

    Google Scholar 

  60. Mazza, M.G., Stokely, K., Strekalova, E.G., Stanley, H.E., Franzese, G.: Cluster Monte Carlo and numerical mean field analysis for the water liquid-liquid phase transition. Comput. Phys. Commun. 180, 497–502 (2009)

    Article  ADS  Google Scholar 

  61. Franzese, G., Bianco, V., Iskrov, S.: Water at interface with proteins. J. Food Biophys. 6, 186–198 (2011)

    Article  Google Scholar 

  62. Franzese, G., Stanley, H.E.: A theory for discriminating the mechanism responsible for the water density anomaly. Physica A 314, 508–513 (2002)

    Article  ADS  Google Scholar 

  63. Franzese, G., Stanley, H.E.: Liquid-liquid critical point in a Hamiltonian model for water: analytic solution. J. Phys., Condens. Matter 14, 2201–2209 (2002)

    Article  ADS  Google Scholar 

  64. Franzese, G., Stanley, H.E.: The Widom line of supercooled water. J. Phys., Condens. Matter 19, 205126 (2007)

    Article  ADS  Google Scholar 

  65. Kumar, P., Franzese, G., Stanley, H.E.: Predictions of dynamic behavior under pressure for two scenarios to explain water anomalies. Phys. Rev. Lett. 100, 105701 (2008)

    Article  ADS  Google Scholar 

  66. Kumar, P., Franzese, G., Stanley, H.E.: Dynamics and thermodynamics of water. J. Phys., Condens. Matter 20, 244114 (2008)

    Article  ADS  Google Scholar 

  67. Franzese, G., de los Santos, F.: Dynamically slow processes in supercooled water confined between hydrophobic plates. J. Phys., Condens. Matter 21, 504107 (2009)

    Article  Google Scholar 

  68. Franzese, G., Hernando-Martínez, A., Kumar, P., Mazza, M.G., Stokely, K., Strekalova, E.G., de los Santos, F., Stanley, H.E.: Phase transitions and dynamics of bulk and interfacial water. J. Phys., Condens. Matter 22, 284103 (2010)

    Article  Google Scholar 

  69. Franzese, G., Stokely, K., Chu, X.-Q., Kumar, P., Mazza, M.G., Chen, S.-H., Stanley, H.E.: Pressure effects in supercooled water: comparison between a 2D model of water and experiments for surface water on a protein. J. Phys.: Condens. Matter 20, 494210 (2008)

    Article  Google Scholar 

  70. Buldyrev, S.V.: Application of discrete molecular dynamics to protein folding and aggregation. Lect. Notes Phys. 752, 97–131 (2008)

    Article  ADS  Google Scholar 

  71. Canpolat, M., Starr, F.W., Sadr-Lahijany, M.R., Scala, A., Mishima, O., Havlin, S., Stanley, H.E.: Local structural heterogeneities in liquid water under pressure. Chem. Phys. Lett. 294, 9–12 (1998)

    Article  ADS  Google Scholar 

  72. Sadr-Lahijany, M.R., Scala, A., Buldyrev, S.V., Stanley, H.E.: Liquid state anomalies for the Stell-Hemmer core-softened potential. Phys. Rev. Lett. 81, 4895–4898 (1998)

    Article  ADS  Google Scholar 

  73. Xu, L., Buldyrev, S.V., Giovambattista, N., Angell, C.A., Stanley, H.E.: A monatomic system with a liquid-liquid critical point and two distinct glassy states. J. Chem. Phys. 130, 054505 (2009)

    Article  ADS  Google Scholar 

  74. Xu, L., Ehrenberg, I., Buldyrev, S.V., Stanley, H.E.: Relationship between the liquid-liquid phase transition and dynamic behavior in the Jagla model. J. Phys.: Condens. Matter 18, S2239–S2246 (2006)

    Article  ADS  Google Scholar 

  75. Kumar, P., Buldyrev, S.V., Sciortino, F., Zaccarelli E., Stanley, H.E.: Static and dynamic anomalies in a repulsive spherical ramp liquid: theory and simulation. Phys. Rev. E 72, 021501 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  76. Gibson, H.M., Wilding, N.B.: Metastable liquid-liquid coexistence and density anomalies in a core-softened fluid. Phys. Rev. E 73, 061507 (2006)

    Article  ADS  Google Scholar 

  77. Lomba, E., Almarza, N.G., Martín, C., McBride, C.: Phase behavior of attractive and repulsive ramp fluids: integral equation and computer simulation studies. J. Chem. Phys. 126, 244510 (2007)

    Article  ADS  Google Scholar 

  78. Franzese, G., Malescio, G., Skibinsky, A., Buldyrev, S.V., Stanley, H.E.: Generic mechanism for generating a liquid-liquid phase transition. Nature 409, 692–695 (2001)

    Article  ADS  Google Scholar 

  79. Buldyrev, S.V., Franzese, G., Giovambattista, N., Malescio, G., Sadr-Lahijany, M.R., Scala, A., Skibinsky, A., Stanley, H.E.: Double-step potential models of fluids - Anomalies and a liquid-liquid phase transition. NATO Science Series, series II: Mathematics, Physics and Chemistry (2002)

  80. Franzese, G., Malescio, G., Skibinsky, A., Buldyrev, S.V., Stanley, H.E.: Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly. Phys. Rev. E 66, 051206 (2002)

    Article  ADS  Google Scholar 

  81. Malescio, G., Franzese, G., Pellicane, G., Skibinsky, A., Buldyrev, S.V., Stanley, H.E.: Liquid-liquid phase transition in one-component fluids. J. Phys., Condens. Matter 14, 2193–2200 (2002)

    Article  ADS  Google Scholar 

  82. Buldyrev, S.V., Franzese, G., Giovambattista, N., Malescio, G., Sadr-Lahijany, M.R., Scala, A., Skibinsky, A., Stanley, H.E.: Models for a liquid-liquid phase transition. Physica A 304, 23–42 (2002)

    Article  ADS  Google Scholar 

  83. Skibinsky, A., Buldyrev, S.V., Franzese, G., Malescio, G., Stanley, H.E.: Liquid-liquid phase transitions for soft-core attractive potentials. Phys. Rev. E 69, 061206 (2004)

    Article  ADS  Google Scholar 

  84. Malescio, G., Franzese, G., Skibinsky, A., Buldyrev, S.V., Stanley, H.E.: Liquid-liquid phase transition for an attractive isotropic potential with wide repulsive range. Phys. Rev. E 71, 061504 (2005)

    Article  ADS  Google Scholar 

  85. Franzese, G.: Differences between discontinuous and continuous soft-core attractive potentials: the appearance of density anomaly. J. Mol. Liq. 136, 267 (2007)

    Article  Google Scholar 

  86. de Oliveira, A.B., Franzese, G., Netz, P.A., Barbosa, M.C.: Waterlike hierarchy of anomalies in a continuous spherical shouldered potential. J. Chem. Phys. 128, 064901 (2008)

    Article  ADS  Google Scholar 

  87. Vilaseca, P., Franzese, G.: Softness dependence of the anomalies for the continuous shouldered well potential. J. Chem. Phys. 133, 084507 (2010)

    Article  ADS  Google Scholar 

  88. Vilaseca, P., Franzese, G.: Isotropic soft-core potentials with two characteristic length scales and anomalous behaviour. J. Non-Cryst. Solids 357, 419–426 (2011)

    Article  ADS  Google Scholar 

  89. Jagla, E.A.: Core-softened potentials and the anomalous properties of water. J. Chem. Phys. 111, 8980 (1999)

    Article  ADS  Google Scholar 

  90. Jagla, E.A.: Phase behavior of a system of particles with core collapse. Phys. Rev. E 58, 1478–1486 (1998)

    Article  ADS  Google Scholar 

  91. Yan, Z., Buldyrev, S.V., Giovambattista, N., Stanley, H.E.: Structural order for one-scale and two-scale potentials. Phys. Rev. Lett. 95, 130604 (2005)

    Article  ADS  Google Scholar 

  92. Yan, Z., Buldyrev, S.V., Giovambattista, N., Debenedetti, P.G., Stanley, H.E.: A family of tunable spherically-symmetric potentials that span the range from hard spheres to water-like behavior. Phys. Rev. E 73, 051204 (2006)

    Article  ADS  Google Scholar 

  93. Yan, Z., Buldyrev, S.V., Kumar, P., Giovambattista, N., Stanley, H.E.: Correspondence between phase diagrams of the TIP5P water model and a spherically symmetric repulsive ramp potential. Phys. Rev. E 77, 042201 (2008)

    Article  ADS  Google Scholar 

  94. Xu, L., Mallamace, F., Yan, Z., Starr, F.W., Buldyrev, S.V., Stanley, H.E.: Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat. Phys. 5, 565–569 (2009)

    Article  Google Scholar 

  95. Paschek, D.: How the liquid-liquid transition affects hydrophobic hydration in deeply supercooled water. Phys. Rev. Lett. 94, 217802 (2005)

    Article  ADS  Google Scholar 

  96. Buldyrev, S.V., Kumar, P., Debenedetti, P.G., Rossky, P., Stanley, H.E.: Water-like solvation thermodynamics in a spherically-symmetric solvent model with two characteristic lengths. Proc. Natl. Acad. Sci. USA 104, 20177–20182 (2007)

    Article  ADS  Google Scholar 

  97. Buldyrev, S.V., Kumar, P, Sastry, S., Stanley, H.E., Weiner, S.: Hydrophobic collapse and cold denaturation in the Jagla model of water. J. Phys., Condens. Matter 22, 284109 (2010)

    Article  Google Scholar 

  98. Stanley, H.E., Buldyrev, S. V., Franzese, G., Kumar, P., Mallamace, F., Mazza, M.G., Stokely, K, Xu, L.: Liquid polymorphism: water in nanoconfined and biological environments. J. Phys., Condens. Matter 22, 284101 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Stokely for discussions. D. C. and P. G. gratefully acknowledge the computational support received from CASPUR, from the INFN-GRID at Roma Tre University and from the Democritos National Simulation Center at SISSA, Trieste. G. F. thanks the Spanish MICINN grant FIS2009-10210 (co-financed FEDER). M. G. M. acknowledges support by the German Research Foundation (DFG) within the framework of the “International Graduate Research Training Group”. S. V. B. acknowledges the partial support of this research through the Dr. Bernard W. Gamson Computational Science Center at Yeshiva College. E. G. S., M. G. M. and H. E. S. acknowledge support by NSF grants CHE0908218 and CHE0911389.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena G. Strekalova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strekalova, E.G., Corradini, D., Mazza, M.G. et al. Effect of hydrophobic environments on the hypothesized liquid-liquid critical point of water. J Biol Phys 38, 97–111 (2012). https://doi.org/10.1007/s10867-011-9241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9241-9

Keywords

PACS

Navigation