Skip to main content
Log in

Biological cell–electrical field interaction: stochastic approach

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The present work demonstrates how a stochastic model can be implemented to obtain a realistic description of the interaction of a biological cell with an external electric field. In our model formulation, the stochasticity is adopted by introducing various levels of forcing intensities in model parameters. The presence of noise in nuclear membrane capacitance has the most significant effect on the current flow through a biological cell. A plausible explanation based on underlying physics and biological structure of the nuclear membrane is proposed to explain such results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dini, L., Abbro, L.: Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36, 195–217 (2005)

    Article  Google Scholar 

  2. Short, W.O., Goodwill, L., Taylor, C.W., Job, C., Arthur, M.E., Cress, A.E.: Alteration of human tumor cell adhesion by high strength static magnetic field. Invest. Radiol. 27, 836–840 (1992)

    Article  Google Scholar 

  3. Ottani, V., Raspanti, M., Martini, D., Tretola, G., Ruggeri, Jr., A., Franchi, M., Piccari, G.G., Ruggeri, A.: Electromagnetic stimulation on the bone growth using backscattered electron imaging. Micron 33, 121–125 (2002)

    Article  Google Scholar 

  4. Panagopoulos, D.J., Messini, N., Karabarbounis, A., Filippetis, A.L., Margaritis, L.H.: A mechanism for action of oscillating electric fields on cells. Biochem. Biophys. Res. Commun. 272, 634–640 (2000)

    Article  Google Scholar 

  5. Kirson, E.D., Gurvich, Z., Schneiderman, R., Dekel, E., Itzhaki, A., Wasserman, Y., Schatzberger, R., Palti, Y.: Disruption of cancer cell replication by alternating electric fields. Cancer Res. 64, 3288–3295 (2004)

    Article  Google Scholar 

  6. Panagopoulos, D.J., Karabarbounis, A., Margaritis, L.H.: Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 298, 95–102 (2002)

    Article  Google Scholar 

  7. Basset, C.A.: The development and application of pulsed electromagnetic fields for ununited fractures and arthrodeses. Clin. Plast. Surg. 12, 259–277 (1985)

    Google Scholar 

  8. Joshi, R.P., Hu, Q., Aly, R., Schoenbach: Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses. Phys. Rev. E 64, 259–277 (1985)

    Google Scholar 

  9. Dubey, A.K., Gupta, S.D., Kumar, R., Tewari, A., Basu, B.: Time constant determination for electrical equivalent of biological cells. J. Appl. Phys. 105, 084705 (2009)

    Article  Google Scholar 

  10. Ratner, B., Hoffman, A.S., Schoen, F.J., Lemons, J.E.: Biomaterials Science: An Introduction to Materials in Medicine. Academic Press, San Diego (1996)

    Google Scholar 

  11. Saha T., Bandyopadhyay, M.: Dynamical analysis of a delayed ratio-dependent prey predator model within fluctuating environment. Appl. Math. Comput. 196, 458–478 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bandyopadhyay, M., Chakrabarti, C.G.: Deterministic and stochastic analysis of a non-linear prey-predator system. J. Biol. Syst. 11, 161–172 (2003)

    Article  MATH  Google Scholar 

  13. Bandyopadhyay, M., Chattopadhyay, J.: Ratio-dependent predator-prey model: effect of environmental fluctuation and stability. Nonlinearity 18, 913–936 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Bandyopadhyay, M., Saha T., Pal, R.: Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment. Nonlinear Anal. Hybrid Syst. 2, 958–970 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gardiner, C.M.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, New York (1985)

    Google Scholar 

  16. Horsthemke, W., Lefever, R.: Noise Induced Transitions: Theory and Applications in Physics, Chemistry and Biology. Springer, Berlin (1984)

    MATH  Google Scholar 

  17. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1974)

    MATH  Google Scholar 

  18. Mao, X.: Stochastic Differential Equations and Applications. Horwood Publishing, England (1997)

    MATH  Google Scholar 

  19. Oksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, New York (2003)

    Google Scholar 

  20. Gard, T.C.: Introduction to Stochastic Differential Equations. Marcel Dekker, New York (1988)

    MATH  Google Scholar 

  21. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1995)

    Google Scholar 

Download references

Acknowledgements

The authors thank Department of Science and Technology, India, for financial support. The authors are thankful to the anonymous reviewer for constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikramjit Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, A.K., Banerjee, M. & Basu, B. Biological cell–electrical field interaction: stochastic approach. J Biol Phys 37, 39–50 (2011). https://doi.org/10.1007/s10867-010-9194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-010-9194-4

Keywords

Navigation