Skip to main content
Log in

Mg2+  modulation of EMCV IRES key activity fragment equilibria and r(G·C) base-pair kinetics

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

NMR magnetization transfer from water and ammonia-catalyzed exchange of the imino proton have been used to probe enhanced thermostability and conformational rearrangements induced by Mg2 +  in two key activity fragments r(CACCUGGCGACAGGUG) and r(GGCCAAAAGCC) of the encephalomyocarditis virus (EMCV) picornavirus internal ribosome entry site (IRES). We have measured some of their r(G·C) base-pair lifetimes and dissociation constants under different MgCl2 conditions, and we compare them with those of other short RNA duplexes. The RNA fragment r(CACCUGGCGACAGGUG) adopts two topologies, a palindromic duplex with two conformations and a hairpin, whose equilibrium can be monitored: the duplex form is destabilized by Mg2 +  and temperature, a delicate balance wherein the entropic contribution of the free energy helps populate the hairpin state. For both fragments, the opening rates of the r(G·C) pairs are lower in the presence of Mg2 +  and their dissociation constants are smaller or comparable. Analysis of the results suggests that Mg2 +  has a preferential and specific effect on the r(CACCUGGCGACAGGUG) hairpin in the region close to the r(G·C) closing pair of the GCGA tetraloop, and the ion moves diffusively around r(GGCCAAAAGCC), thereby differentiating the GNRA and RAAA hairpin motifs that are both involved in the biological regulation functions of the EMCV IRES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Der Velden, A., Kaminski, A., Jackson, R., Belsham, G.: Defective point mutants of the encephalomyocarditis virus internal ribosome entry site can be complemented in trans. Virology 214, 82–90 (1995). doi:10.1006/viro.1995.9952

    Article  Google Scholar 

  2. Hoffman, M.A., Palmenberg, A.C.: Mutational analysis of the J-K stem-loop region of the encephalomyocarditis virus IRES. J. Virol. 69, 4399–4406 (1995)

    Google Scholar 

  3. Witherell, G.W., Schultz-Witherell, C.S., Wimmer, E.: Cis-acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology 214, 660–663 (1995). doi:10.1006/viro.1995.0081

    Article  Google Scholar 

  4. Roberts, L.O., Belsham, G.: Complementation of defective picornavirus internal ribosome entry site (IRES) elements by the co-expression of fragments of the IRES. Virology 227, 53–62 (1997). doi:10.1006/viro.1996.8312

    Article  Google Scholar 

  5. Kolupaeva, V., Pestova, T., Hellen, C., Shatsky, I.: Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J. Biol. Chem. 273, 18599–18604 (1998). doi:10.1074/jbc.273.29.18599

    Article  Google Scholar 

  6. Robertson, M., Seamons, R., Belsham, G.: A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5, 1167–1179 (1999). doi:10.1017/S1355838299990301

    Article  Google Scholar 

  7. Fernandez-Miragall, O., Ramos, R., Ramajo, J., Martinez-Salas, E.: Evidence of reciprocal tertiary interactions between conserved motifs involved in organizing RNA structure essential for internal initiation of translation. RNA 12, 223–234 (2006). doi:10.1261/rna.2153206

    Article  Google Scholar 

  8. Phelan, M., Banks, R.J., Conn, G., Ramesh, V.: NMR studies of the structure and Mg2 +  binding properties of a conserved RNA motif of EMCV picornavirus IRES element. Nucleic Acids Res. 32, 4715–4724 (2004). doi:10.1093/nar/gkh805

    Article  Google Scholar 

  9. Snoussi, K., Leroy, J.-L.: Alteration of AT base-pair opening kinetics by the ammonium cation in DNA A-tracts. Biochemistry 41, 12467–12474 (2002). doi:10.1021/bi020184p

    Article  Google Scholar 

  10. Snoussi, K., Leroy, J.-L.: Imino proton exchange and base-pair kinetics in RNA duplexes. Biochemistry 40, 8898–8904 (2001). doi:10.1021/bi010385d

    Article  Google Scholar 

  11. Leroy, J.-L., Charretier, E., Kochoyan, M., Guéron, M.: Evidence from base-pair kinetics for two types of adenine tract structures in solution: their relation to DNA curvature. Biochemistry 27, 8894–8898 (1988). doi:10.1021/bi00425a004

    Article  Google Scholar 

  12. Kochoyan, M., Leroy, J.-L., Guéron, M.: Processes of base-pair opening and proton exchange in Z-DNA. Biochemistry 29, 4799–4805 (1990). doi:10.1021/bi00472a008

    Article  Google Scholar 

  13. Guéron, M., Leroy, J.-L.: Studies of base pair kinetics by NMR measurement of proton exchange. Methods Enzymol. 261, 383–413 (1995). doi:10.1016/S0076-6879(95)61018-9

    Article  Google Scholar 

  14. Cantor, C.R., Warshaw, M.M., Shapiro, H.: Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers 9, 1059–1077 (1970). doi:10.1002/bip.1970.360090909

    Article  Google Scholar 

  15. Jucker, F.M., Heus, H.A., Yip, P.F., Moors, E.H.M., Pardi, A.: A network of heterogeneous hydrogen bonds in GNRA tetraloops. J. Mol. Biol. 264, 968–980 (1996). doi:10.1006/jmbi.1996.0690

    Article  Google Scholar 

  16. Searle, M.S., William, D.H.: On the stability of nucleic acid structures in solution: enthalpy–entropy compensations, internal rotations and reversibility. Nucleic Acids Res. 21, 2051–2056 (1993). doi:10.1093/nar/21.9.2051

    Article  Google Scholar 

  17. Hermann, T., Westhof, E.: Exploration of metal binding sites in RNA folds by Brownian-dynamics simulations. Structure 6, 1303–1314 (1998). doi:10.1016/S0969-2126(98)00130-0

    Article  Google Scholar 

  18. Uhlenbeck, O.C.: Nucleic-acid structure tetraloops and RNA folding. Nature 20, 613–614 (1990). doi:10.1038/346613a0

    Article  ADS  Google Scholar 

  19. Antao, V.P., Tinoco, I., Jr.: Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 20, 819–824 (1992). doi:10.1093/nar/20.4.819

    Article  Google Scholar 

  20. Saenger, W.: Principles of Nucleic Acid Structure. Springer, New York (1984)

    Google Scholar 

  21. Russell, R., Zhuang, X., Babcock, H.P., Millett, I.S., Doniach, S., Chu, S., Herschlag, D.: Channels in the folding landscape. Proc. Natl. Acad. Sci. U. S. A. 99, 155–160 (2002). doi:10.1073/pnas.221593598

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Julien A. Dupont is a studentship recipient of the F.R.I.A. (Fonds pour la formation à la Recherche dans l’Industrie et l’Agriculture). This work was supported by the Belgian National Foundation for the Scientific Research (F.N.R.S.) and the Catholic University of Louvain (Fonds Spéciaux de Recherche).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Snoussi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupont, J.A., Snoussi, K. Mg2+  modulation of EMCV IRES key activity fragment equilibria and r(G·C) base-pair kinetics. J Biol Phys 35, 231–243 (2009). https://doi.org/10.1007/s10867-009-9151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9151-2

Keywords

Navigation