Skip to main content
Log in

Collective Equilibrium Behaviour of Ion Channel Gating in Cell Membranes: An Ising Model Formulation

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A statistical mechanical model for voltage-gated ion channels in cell membranes is proposed using the transfer matrix method. Equilibrium behavior of the system is studied. Representing the distribution of channels over the cellular membrane on a one-dimensional array with each channel having two states (open and closed) and incorporating channel–channel cooperative interactions, we calculate the fraction of channels in the open state at equilibrium. Experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon, using the cut-open axon technique, is best fit by the model when there is no interaction between the channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hille, B.: Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, MA (1992)

  2. Perkel, D.H., Mulloney, B.: Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185, 181–182 (1974)

    Article  ADS  Google Scholar 

  3. Park, M.-H., Kim, S.: Analysis of phase models for two coupled Hodgkin–Huxley neurons. J. Korean Phys. Soc. 29, 9–16 (1997)

    Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  5. Roux, B.: Statistical mechanical equilibrium theory of selective ion channels. Biophys. J. 77, 139–153 (1999)

    ADS  Google Scholar 

  6. Yang, Y.S., Thompson, C.J., Anderson, V., Wood, A.W.: A statistical mechanical model of cell membrane ion channels in electric fields: the mean-field approximation. Physica A 268, 424–432 (1999)

    Article  Google Scholar 

  7. Erdem, R., Ekiz, C.: An interactive two-state model for cell membrane potassium and sodium ion channels in electric fields using the pair approximation. Physica A 351, 417–426 (2005)

    Article  ADS  Google Scholar 

  8. Özer, M., Erdem, R.: Dynamics of voltage-gated ion channels in cell membranes by the path probability method. Physica A 331, 51–60 (2004)

    Article  ADS  Google Scholar 

  9. Erdem, R., Ekiz, C.: A noninteractive two-state model of cell membrane ion channels using the pair approximation. Phys. Lett. A 331, 28–33 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Erdem, R., Ekiz, C: A kinetic model for voltage-gated ion channels in cell membranes based on the path integral method. Physica A 349, 283–290 (2005)

    Article  ADS  Google Scholar 

  11. Correa, A.M., Bezanilla, F., Latorre, R.: Gating kinetics of batrachotoxin-modified Na + channels in the squid giant axon. Biophys. J. 61, 1332–1352 (1992)

    Google Scholar 

  12. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part I. Phys. Rev. 60, 252–262 (1941)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Ghosh, S., Mukherjee, A.: Statistical mechanics of membrane channels. J. Theor. Biol. 160, 151–157 (1993)

    Article  Google Scholar 

  15. Zimm, B.H., Bragg, J.K.: Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526–535 (1959)

    Article  ADS  Google Scholar 

  16. Ghosh, S.: Relaxation of membrane channels: a statistical mechanical approach. J. Theor. Biol. 165, 171–176 (1993)

    Article  Google Scholar 

  17. Liu, Y., Dilger, J.P.: Application of the one- and two-dimensional Ising models to studies of cooperativity between ion channels. Biophys. J. 64, 26–35 (1993)

    ADS  Google Scholar 

  18. Mejdani, R.: A lattice gas model on a tangled chain for enzyme kinetics. Physica A 206, 332–349 (1994)

    Article  ADS  Google Scholar 

  19. Ishii, H.: A statistical–mechanical model for regulation of long-range chromatin structure and gene expression. J. Theor. Biol. 203, 215–228 (2000)

    Article  Google Scholar 

  20. Bakk, A., Høye, J.S.: One-dimensional Ising model applied to protein folding. Physica A 323, 504–518 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Guo, C., Levine, H.: A thermodynamic model for receptor clustering. Biophys. J. 77, 2358–2365 (1999)

    Article  Google Scholar 

  22. Thompson, C.J., Yang, Y.S., Anderson, V., Wood, A.W.: A cooperative model for Ca ++ efflux windowing from cell membranes exposed to electromagnetic radiation. Bioelectromagnetics 21, 455–464 (2000)

    Article  Google Scholar 

  23. Guisoni, N., de Oliveira, M.J.: Lattice model for calcium dynamics. Phys. Rev. E 71, 061910 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rıza Erdem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdem, R. Collective Equilibrium Behaviour of Ion Channel Gating in Cell Membranes: An Ising Model Formulation. J Biol Phys 32, 523–529 (2006). https://doi.org/10.1007/s10867-007-9034-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-007-9034-3

Keywords

Navigation