Skip to main content
Log in

Dietary fatty acids modulate liver mitochondrial cardiolipin content and its fatty acid composition in rats with non alcoholic fatty liver disease

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

No data are reported on changes in mitochondrial membrane phospholipids in non-alcoholic fatty liver disease. We determined the content of mitochondrial membrane phospholipids from rats with non alcoholic liver steatosis, with a particular attention for cardiolipin (CL) content and its fatty acid composition, and their relation with the activity of the mitochondrial respiratory chain complexes. Different dietary fatty acid patterns leading to steatosis were explored. With high-fat diet, moderate macrosteatosis was observed and the liver mitochondrial phospholipid class distribution and CL fatty acids composition were modified. Indeed, both CL content and its C18:2n-6 content were increased with liver steatosis. Moreover, mitochondrial ATP synthase activity was positively correlated to the total CL content in liver phospholipid and to CL C18:2n-6 content while other complexes activity were negatively correlated to total CL content and/or CL C18:2n-6 content of liver mitochondria. The lard-rich diet increased liver CL synthase gene expression while the fish oil-rich diet increased the (n-3) polyunsaturated fatty acids content in CL. Thus, the diet may be a significant determinant of both the phospholipid class content and the fatty acid composition of liver mitochondrial membrane, and the activities of some of the respiratory chain complex enzymes may be influenced by dietary lipid amount in particular via modification of the CL content and fatty acid composition in phospholipid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aoun M, Feillet-Coudray C, Fouret G, Chabi B, Crouzier D, Ferreri C, Chatgilialoglu C, Wrutniak-Cabello C, Cristol JP, Carbonneau MA, Coudray C (2011) Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns. Br J Nutr:1–13

  • Assy N, Nassar F, Nasser G, Grosovski M (2009) Olive oil consumption and non-alcoholic fatty liver disease. World J Gastroenterol 15:1809–1815

    Article  CAS  Google Scholar 

  • Barness LA, Opitz JM, Gilbert-Barness E (2007) Obesity: genetic, molecular, and environmental aspects. Am J Med Genet A 143:3016–3034

    Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  Google Scholar 

  • Barzanti V, Battino M, Baracca A, Cavazzoni M, Cocchi M, Noble R, Maranesi M, Turchetto E, Lenaz G (1994) The effect of dietary lipid changes on the fatty acid composition and function of liver, heart and brain mitochondria in the rat at different ages. Br J Nutr 71:193–202

    Article  CAS  Google Scholar 

  • Biggemann B, Laryea MD, Schuster A, Griese M, Reinhardt D, Bremer HJ (1988) Status of plasma and erythrocyte fatty acids and vitamin A and E in young children with cystic fibrosis. Scand J Gastroenterol Suppl 143:135–141

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brenner RR (1981) Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog Lipid Res 20:41–47

    Article  CAS  Google Scholar 

  • Cheng P, Hatch GM (1995) Inhibition of cardiolipin biosynthesis in the hypoxic rat heart. Lipids 30:513–519

    Article  CAS  Google Scholar 

  • Chiang DJ, Pritchard MT, Nagy LE (2011) Obesity, diabetes mellitus, and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 300:G697–G702

    Article  CAS  Google Scholar 

  • Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44

    Article  CAS  Google Scholar 

  • Claypool SM (2009) Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta 1788:2059–2068

    Article  CAS  Google Scholar 

  • Colbeau A, Nachbaur J, Vignais PM (1971) Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta 249:462–492

    Article  CAS  Google Scholar 

  • Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440

    CAS  Google Scholar 

  • Erickson SK (2009) Nonalcoholic fatty liver disease. J Lipid Res 50(Suppl):S412–S416

    Article  Google Scholar 

  • Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP, Coudray C (2009) Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46:624–632

    Article  CAS  Google Scholar 

  • Ferreira FM, Seica R, Oliveira PJ, Coxito PM, Moreno AJ, Palmeira CM, Santos MS (2003) Diabetes induces metabolic adaptations in rat liver mitochondria: role of coenzyme Q and cardiolipin contents. Biochim Biophys Acta 1639:113–120

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Frezza C, Cipolat S, Scorrano L (2007) Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat Protoc 2:287–295

    Article  CAS  Google Scholar 

  • Gentile CL, Frye MA, Pagliassotti MJ (2011) Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease. Biofactors 37:8–16

    Article  CAS  Google Scholar 

  • Ghosh S, Kewalramani G, Yuen G, Pulinilkunnil T, An D, Innis SM, Allard MF, Wambolt RB, Qi D, Abrahani A, Rodrigues B (2006) Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med 41:1413–1424

    Article  CAS  Google Scholar 

  • Giudetti AM, Sabetta S, di Summa R, Leo M, Damiano F, Siculella L, Gnoni GV (2003) Differential effects of coconut oil- and fish oil-enriched diets on tricarboxylate carrier in rat liver mitochondria. J Lipid Res 44:2135–2141

    Article  CAS  Google Scholar 

  • Gohil VM, Greenberg ML (2009) Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand. J Cell Biol 184:469–472

    Article  CAS  Google Scholar 

  • Green DE, Allmann DW, Harris RA, Tan WC (1968) Enzyme localization in the inner and outer mitochondrial membranes. Biochem Biophys Res Commun 31:368–378

    Article  CAS  Google Scholar 

  • Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW (2007) Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry 46:6417–6428

    Article  CAS  Google Scholar 

  • Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    Article  CAS  Google Scholar 

  • Hoch FL (1998) Cardiolipins and mitochondrial proton-selective leakage. J Bioenerg Biomembr 30:511–532

    Article  CAS  Google Scholar 

  • Hong MY, Chapkin RS, Barhoumi R, Burghardt RC, Turner ND, Henderson CE, Sanders LM, Fan YY, Davidson LA, Murphy ME, Spinka CM, Carroll RJ, Lupton JR (2002) Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis 23:1919–1925

    Article  CAS  Google Scholar 

  • Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506

    Article  CAS  Google Scholar 

  • Hulbert AJ, Turner N, Storlien LH, Else PL (2005) Dietary fats and membrane function: implications for metabolism and disease. Biol Rev Camb Philos Soc 80:155–169

    Article  CAS  Google Scholar 

  • Janssen AJ, Trijbels FJ, Sengers RC, Smeitink JA, van den Heuvel LP, Wintjes LT, Stoltenborg-Hogenkamp BJ, Rodenburg RJ (2007) Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clin Chem 53:729–734

    Article  CAS  Google Scholar 

  • Jenkins DJ, Wolever TM, Kalmusky J, Giudici S, Giordano C, Wong GS, Bird JN, Patten R, Hall M, Buckley G et al (1985) Low glycemic index carbohydrate foods in the management of hyperlipidemia. Am J Clin Nutr 42:604–617

    CAS  Google Scholar 

  • Ladbrooke BD, Chapman D (1969) Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem Phys Lipids 3:304–356

    Article  CAS  Google Scholar 

  • Lansman RA, Shade RO, Shapira JF, Avise JC (1981) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol 17:214–226

    Article  CAS  Google Scholar 

  • Li LO, Klett EL, Coleman RA (2010) Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:246–251

    Article  CAS  Google Scholar 

  • Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM (2008) Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med

  • McMillin JB, Dowhan W (2002) Cardiolipin and apoptosis. Biochim Biophys Acta 1585:97–107

    Article  CAS  Google Scholar 

  • Nakahara I, Kikuchi H, Taki W, Nishi S, Kito M, Yonekawa Y, Goto Y, Ogata N (1992) Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J Neurosurg 76:244–250

    Article  CAS  Google Scholar 

  • O’Brien JS, Rouser G (1964) The fatty acid composition of brain sphingolipids: sphingomyelin, ceramide, cerebroside, and cerebroside sulfate. J Lipid Res 5:339–342

    Google Scholar 

  • Okumura K, Yamada Y, Kondo J, Hashimoto H, Ito T, Kitoh J (1991) Decreased 1,2-diacylglycerol levels in myopathic hamster hearts during the development of heart failure. J Mol Cell Cardiol 23:409–416

    Article  CAS  Google Scholar 

  • Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192:7–16

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 48:1286–1295

    Article  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G (2003) Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J 17:714–716

    Article  CAS  Google Scholar 

  • Petrosillo G, Portincasa P, Grattagliano I, Casanova G, Matera M, Ruggiero FM, Ferri D, Paradies G (2007) Mitochondrial dysfunction in rat with nonalcoholic fatty liver Involvement of complex I, reactive oxygen species and cardiolipin. Biochim Biophys Acta 1767:1260–1267

    Article  CAS  Google Scholar 

  • Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838

    Article  CAS  Google Scholar 

  • Power GW, Yaqoob P, Harvey DJ, Newsholme EA, Calder PC (1994) The effect of dietary lipid manipulation on hepatic mitochondrial phospholipid fatty acid composition and carnitine palmitoyltransferase I activity. Biochem Mol Biol Int 34:671–684

    CAS  Google Scholar 

  • Ray TK, Skipski VP, Barclay M, Essner E, Archibald FM (1969) Lipid composition of rat liver plasma membranes. J Biol Chem 244:5528–5536

    CAS  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  CAS  Google Scholar 

  • Saini-Chohan HK, Holmes MG, Chicco AJ, Taylor WA, Moore RL, McCune SA, Hickson-Bick DL, Hatch GM, Sparagna GC (2009) Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J Lipid Res 50:1600–1608

    Article  CAS  Google Scholar 

  • Schlame M (2008) Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res 49:1607–1620

    Article  CAS  Google Scholar 

  • Schlame M, Otten D (1991) Analysis of cardiolipin molecular species by high-performance liquid chromatography of its derivative 1,3-bisphosphatidyl-2-benzoyl-sn-glycerol dimethyl ester. Anal Biochem 195:290–295

    Article  CAS  Google Scholar 

  • Schlame M, Brody S, Hostetler KY (1993) Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur J Biochem 212:727–735

    Article  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  Google Scholar 

  • Srere P (1969) Citrate synthase. Methods Enzymol 13:3–11

    Article  CAS  Google Scholar 

  • Stefanyk LE, Coverdale N, Roy BD, Peters SJ, LeBlanc PJ (2010) Skeletal muscle type comparison of subsarcolemmal mitochondrial membrane phospholipid fatty acid composition in rat. J Membr Biol 234:207–215

    Article  CAS  Google Scholar 

  • Taylor WA, Xu FY, Ma BJ, Mutter TC, Dolinsky VW, Hatch GM (2002) Expression of monolysocardiolipin acyltransferase activity is regulated in concert with the level of cardiolipin and cardiolipin biosynthesis in the mammalian heart. BMC Biochem 3:9

    Article  Google Scholar 

  • Teodoro JS, Rolo AP, Duarte FV, Simoes AM, Palmeira CM (2008) Differential alterations in mitochondrial function induced by a choline-deficient diet: understanding fatty liver disease progression. Mitochondrion 8:367–376

    Article  CAS  Google Scholar 

  • Wharton D, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250

    Article  CAS  Google Scholar 

  • Yamaoka S, Urade R, Kito M (1988) Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil. J Nutr 118:290–296

    CAS  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Feillet-Coudray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 55 kb)

ESM 2

(DOC 72 kb)

ESM 3

(DOC 71 kb)

ESM 4

(DOC 69 kb)

ESM 5

(DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoun, M., Fouret, G., Michel, F. et al. Dietary fatty acids modulate liver mitochondrial cardiolipin content and its fatty acid composition in rats with non alcoholic fatty liver disease. J Bioenerg Biomembr 44, 439–452 (2012). https://doi.org/10.1007/s10863-012-9448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9448-x

Keywords

Navigation