Skip to main content
Log in

Cyanide inhibition and pyruvate-induced recovery of cytochrome c oxidase

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mechanism of cyanide’s inhibitory effect on the mitochondrial cytochrome c oxidase (COX) as well as the conditions for its recovery have not yet been fully explained. We investigated three parameters of COX function, namely electron transport (oxygen consumption), proton transport (mitochondrial membrane potential Δψ m) and the enzyme affinity to oxygen (p 50 value) with regard to the inhibition by KCN and its reversal by pyruvate. 250 μM KCN completely inhibited both the electron and proton transport function of COX. The inhibition was reversible as demonstrated by washing of mitochondria. The addition of 60 mM pyruvate induced the maximal recovery of both parameters to 60–80% of the original values. When using low KCN concentrations of up to 5 μM, we observed a profound, 30-fold decrease of COX affinity for oxygen. Again, this decrease was completely reversed by washing mitochondria while pyruvate induced only a partial, yet significant recovery of oxygen affinity. Our results demonstrate that the inhibition of COX by cyanide is reversible and that the potential of pyruvate as a cyanide poisoning antidote is limited. Importantly, we also showed that the COX affinity for oxygen is the most sensitive indicator of cyanide toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afkhami A, Sarlak N, Zarei AR (2007) Simultaneous kinetic spectrophotometric determination of cyanide and thiocyanate using the partial least squares (PLS) regression. Talanta 71:893–899

    Article  CAS  Google Scholar 

  • Baskin SI, Brewer TG (1997) In: Sidell FR, Takafuji ET, Franz DR (eds) Medical aspects of chemical and biological warfare: Cyanide poisoning. TMM Publications, Borden Institute, Walter Reed Army Medical Center, Washington, D.C, pp 271–286

    Google Scholar 

  • Beasley DM, Glass WI (1998) Cyanide poisoning: pathophysiology and treatment recommendations. Occup Med (Lond) 48:427–431

    Article  CAS  Google Scholar 

  • Bhattacharya R, Tulsawani R (2009) Protective role of alpha-ketoglutarate against massive doses of cyanide in rats. J Environ Biol 30:515–520

    CAS  Google Scholar 

  • Bhattacharya R, Kumar D, Sugendran K, Pant SC, Tulsawani RK, Vijayaraghavan R (2001) Acute toxicity studies of alpha-ketoglutarate: a promising antidote for cyanide poisoning. J Appl Toxicol 21:495–499

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brenner M, Mahon SB, Lee J, Kim J, Mukai D, Goodman S, Kreuter KA, Ahdout R, Mohammad O, Sharma VS et al (2010) Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring. J Biomed Opt 15:017001

    Article  Google Scholar 

  • Broderick KE, Potluri P, Zhuang S, Scheffler IE, Sharma VS, Pilz RB, Boss GR (2006) Cyanide detoxification by the cobalamin precursor cobinamide. Exp Biol Med (Maywood) 231:641–649

    CAS  Google Scholar 

  • Brzezinski P, Gennis RB (2008) Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 40:521–531

    Article  CAS  Google Scholar 

  • Bustamante E, Soper JW, Pedersen PL (1977) A high-yield preparative method for isolation of rat liver mitochondria. Anal Biochem 80:401–408

    Article  CAS  Google Scholar 

  • Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287

    Article  CAS  Google Scholar 

  • Cater DB, Garatini S, Marina F, Silver IA (1961) Changes of oxygen tension in brain and somatic tissues induced by vasodilator and vasoconstrictor substances. Proc Roy Soc Lond B Biol Sci 155:136–157

    Article  Google Scholar 

  • Chen YR, Sturgeon BE, Gunther MR, Mason RP (1999) Electron spin resonance investigation of the cyanyl and azidyl radical formation by cytochrome c oxidase. J Biol Chem 274:24611–24616

    Article  CAS  Google Scholar 

  • Cittadini A, Caprino L, Terranova T (1972) Effect of pyruvate on the acute cyanide poisoning in mice. Experientia 28:943–944

    Article  CAS  Google Scholar 

  • Clark JF, Matsumoto T, Nakayama S (2000) Intact smooth muscle metabolism: its responses to cyanide poisoning and pyruvate stimulation. Front Biosci 5:A18–23

    CAS  Google Scholar 

  • Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539

    Article  CAS  Google Scholar 

  • Cummings TF (2004) The treatment of cyanide poisoning. Occup Med (Lond) 54:82–85

    Article  CAS  Google Scholar 

  • Delhumeau G, Cruz-Mendoza AM, Gomez Lojero C (1994) Protection of cytochrome c oxidase against cyanide inhibition by pyruvate and alpha-ketoglutarate: effect of aeration in vitro. Toxicol Appl Pharmacol 126:345–351

    Article  CAS  Google Scholar 

  • Erecinska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128:263–276

    Article  CAS  Google Scholar 

  • Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277–297

    Article  CAS  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R (1998a) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201:1129–1139

    CAS  Google Scholar 

  • Gnaiger E, Lassnig B, Kuznetsov AV, Margreiter R (1998b) Mitochondrial respiration in the low oxygen environment of the cell. Effect of ADP on oxygen kinetics. Biochim Biophys Acta 1365:249–254

    Article  CAS  Google Scholar 

  • Hariharakrishnan J, Anand T, Satpute RM, Jayaraj R, Prasad GB, Bhattacharya R (2009) Activity and gene expression profile of certain antioxidant enzymes in different organs of rats after subacute cyanide exposure: effect of alpha-ketoglutarate. Drug Chem Toxicol 32:268–276

    Article  CAS  Google Scholar 

  • Hosler JP, Ferguson-Miller S, Mills DA (2006) Energy transduction: proton transfer through the respiratory complexes. Annu Rev Biochem 75:165–187

    Article  CAS  Google Scholar 

  • Isom GE, Way JL (1984) Effects of oxygen on the antagonism of cyanide intoxication: cytochrome oxidase, in vitro. Toxicol Appl Pharmacol 74:57–62

    Article  CAS  Google Scholar 

  • Isom GE, Burrows GE, Way JL (1982) Effect of oxygen on the antagonism of cyanide intoxication–cytochrome oxidase, in vivo. Toxicol Appl Pharmacol 65:250–256

    Article  CAS  Google Scholar 

  • Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E (2000) Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med 29:211–221

    Article  CAS  Google Scholar 

  • Labajova A, Vojtiskova A, Krivakova P, Kofranek J, Drahota Z, Houstek J (2006) Evaluation of mitochondrial membrane potential using a computerized device with a tetraphenylphosphonium-selective electrode. Anal Biochem 353:37–42

    Article  CAS  Google Scholar 

  • Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE (2008) Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 101:101–111

    Article  CAS  Google Scholar 

  • Ludwig B, Bender E, Arnold S, Huttemann M, Lee I, Kadenbach B (2001) Cytochrome c oxidase and the regulation of oxidative phosphorylation. Chembiochem 2:392–403

    Article  CAS  Google Scholar 

  • Marshall EK, Rosenfeld M (1934) Control of cyanide action: cyanohydrin equilibria in vivo and in vitro. J Pharmacol Exp Ther 52:445–461

    CAS  Google Scholar 

  • McMurry J (2000). Organic chemistry, Brooks/Cole, Pacific Grove

  • Muramoto K, Ohta K, Shinzawa-Itoh K, Kanda K, Taniguchi M, Nabekura H, Yamashita E, Tsukihara T, Yoshikawa S (2010) Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate. Proc Natl Acad Sci USA 107:7740–7745

    Article  CAS  Google Scholar 

  • Nair P, Whalen WJ, Buerk D (1975) PO2 of cat cerebral cortex: response to breathing N2 and 100 per cent O2. Microvasc Res 9:158–165

    Article  CAS  Google Scholar 

  • Nicholls DG (1977) The effective proton conductance of the inner membrane of mitochondria from brown adipose tissue. Dependency on proton electrochemical potential gradient. Eur J Biochem 77:349–356

    Article  CAS  Google Scholar 

  • Nicholls P, van Buuren KJ, van Gelder BF (1972) Biochemical and biophysical studies on cytochrome aa3: VIII. Effect of cyanide on the catalytic activity. Biochim Biophys Acta 275:279–287

    Article  CAS  Google Scholar 

  • Niknahad H, Ghelichkhani E (2002) Antagonism of cyanide poisoning by dihydroxyacetone. Toxicol Lett 132:95–100

    Article  CAS  Google Scholar 

  • Nosek J, Chmelar V, Ledvina M (1957) Antide in cyanide poisoning; effect of ascorbic acid, ferronate C, glucose, dioxyacetone and pyroracemic acid on the course of experimental poisoning. Cesk Fysiol 6:87–94

    CAS  Google Scholar 

  • Palmer G (1993) Current issues in the chemistry of cytochrome c oxidase. J Bioenerg Biomembr 25:145–151

    Article  CAS  Google Scholar 

  • Pearce LL, Bominaar EL, Hill BC, Peterson J (2003) Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide: an endogenous antidote to cyanide poisoning? J Biol Chem 278:52139–52145

    Article  CAS  Google Scholar 

  • Pearce LL, Lopez Manzano E, Martinez-Bosch S, Peterson J (2008) Antagonism of nitric oxide toward the inhibition of cytochrome c oxidase by carbon monoxide and cyanide. Chem Res Toxicol 21:2073–2081

    Article  CAS  Google Scholar 

  • Pecina P, Capkova M, Chowdhury SK, Drahota Z, Dubot A, Vojtiskova A, Hansikova H, Houst’kova H, Zeman J, Godinot C et al (2003) Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim Biophys Acta 1639:53–63

    CAS  Google Scholar 

  • Pecina P, Houstkova H, Hansikova H, Zeman J, Houstek J (2004) Genetic defects of cytochrome c oxidase assembly. Physiol Res 53(Suppl 1):S213–223

    CAS  Google Scholar 

  • Petersen LC (1977) The effect of inhibitors on the oxygen kinetics of cytochrome c oxidase. Biochim Biophys Acta 460:299–307

    Article  CAS  Google Scholar 

  • Piccoli C, Scrima R, Boffoli D, Capitanio N (2006) Control by cytochrome c oxidase of the cellular oxidative phosphorylation system depends on the mitochondrial energy state. Biochem J 396:573–583

    Article  CAS  Google Scholar 

  • Rossignol R, Letellier T, Malgat M, Rocher C, Mazat JP (2000) Tissue variation in the control of oxidative phosphorylation: implication for mitochondrial diseases. Biochem J 347(Pt 1):45–53

    Article  CAS  Google Scholar 

  • Schwartz C, Morgan RL, Way LM, Way JL (1979) Antagonism of cyanide intoxication with sodium pyruvate. Toxicol Appl Pharmacol 50:437–441

    Article  CAS  Google Scholar 

  • Shoubridge EA (2001) Cytochrome c oxidase deficiency. Am J Med Genet 106:46–52

    Article  CAS  Google Scholar 

  • Smolkova K, Bellance N, Scandurra F, Genot E, Gnaiger E, Plecita-Hlavata L, Jezek P, Rossignol R (2010) Mitochondrial bioenergetic adaptations of breast cancer cells to aglycemia and hypoxia. J Bioenerg Biomembr 42:55–67

    Article  CAS  Google Scholar 

  • Steinlechner-Maran R, Eberl T, Kunc M, Margreiter R, Gnaiger E (1996) Oxygen dependence of respiration in coupled and uncoupled endothelial cells. Am J Physiol 271:C2053–2061

    CAS  Google Scholar 

  • Warburg O, Negelein E, Haas E (1933) Spectroscopic demonstration of the O-transferring enzyme in the presence of cytochrome. Biochem Z 266:1–8

    CAS  Google Scholar 

  • Wilson MT, Antonini G, Malatesta F, Sarti P, Brunori M (1994) Probing the oxygen binding site of cytochrome c oxidase by cyanide. J Biol Chem 269:24114–24119

    CAS  Google Scholar 

  • Wittenberg BA, Wittenberg JB (1985) Oxygen pressure gradients in isolated cardiac myocytes. J Biol Chem 260:6548–6554

    CAS  Google Scholar 

  • Zolkiewska A, Zablocka B, Duszynski J, Wojtczak L (1989) Resting state respiration of mitochondria: reappraisal of the role of passive ion fluxes. Arch Biochem Biophys 275:580–590

    Article  CAS  Google Scholar 

  • Zottola MA, Beigel K, Soni SD, Lawrence R (2009) Disulfides as cyanide antidotes: evidence for a new in vivo oxidative pathway for cyanide detoxification. Chem Res Toxicol 22:1948–1953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Houštěk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nůsková, H., Vrbacký, M., Drahota, Z. et al. Cyanide inhibition and pyruvate-induced recovery of cytochrome c oxidase. J Bioenerg Biomembr 42, 395–403 (2010). https://doi.org/10.1007/s10863-010-9307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-010-9307-6

Keywords

Navigation