Skip to main content
Log in

Regulation by Magnesium of Potato Tuber Mitochondrial Respiratory Activities

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and α-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or α-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of α-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike α-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beavis, A. D., and Garlid, K. D. (1987). J. Biol. Chem. 262, 15085–15093.

    Google Scholar 

  • Beavis, A. D., and Vercesi, A. E. (1992). J. Biol. Chem. 267, 3079– 3087.

    Google Scholar 

  • Bedino, S., and Testore, G. (1992). Int. J. Biochem. 24, 1697–1704.

    Google Scholar 

  • Bernardi, P. (1999). Physiol. Rev. 79, 1127–1155.

    Google Scholar 

  • Bowman, E. J., and Ikuma, H. (1976). Plant Physiol. 58, 433–437.

    Google Scholar 

  • Bradford, M. M. (1976). Anal. Biochem. 72, 248–264.

    Article  CAS  PubMed  Google Scholar 

  • Bulygin, V. V., Syroeshkin, A. V., and Vinogradov, A. D. (1993). FEBS Lett. 328, 193–196.

    Google Scholar 

  • Cadenas, S., and Brand, M. D. (2000). Biochem. J. 348, 209–213.

    Google Scholar 

  • Chen, C.-H., and Lehninger, A. L. (1973). Arch. Biochem. Biophys. 157, 183–196.

    Google Scholar 

  • Corkey, B. E., Duszynski, J., Rich, T. L., Matschinsky, B., and Williamson, J. R. (1986). J. Biol. Chem. 261, 2567–2574.

    Google Scholar 

  • Coultate, T. P., and Dennis, D. T. (1969). Eur. J. Biochem. 7, 153–158.

    Google Scholar 

  • Flatman, P. W. (1984). J. Membr. Biol 80, 1–14.

    Google Scholar 

  • Gómez-Puyou, A., Ayala, G., Muller, U., and Gómez-Puyou, M. T. (1983). J. Biol. Chem. 258, 13673–13679.

    Google Scholar 

  • Jung, D. W., Panzeter, E., Baysal, K., and Brierley, G. P. (1997). Biochim. Biophys. Acta 1320, 310–320.

    Google Scholar 

  • Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979). J. Membr. Biol. 49, 105–121.

    Google Scholar 

  • McCormack, J. G., and Denton, R. M. (1979). Biochem. J. 180, 533– 544.

    Google Scholar 

  • McCormack, J. G., Halestrap, A., and Denton, R. M. (1990). Physiol. Rev. 70, 391–425.

    Google Scholar 

  • Moravec, C. S., and Bond, M. (1991). Am. J. Physiol. 260, H989– H997.

    Google Scholar 

  • Moravec, C. S., and Bond, M. (1992). J. Biol. Chem. 267, 5310–5316.

    Google Scholar 

  • Neuburger, M., Journet, E.-P., Bligny, R., Carde, J.-P., and Douce, R. (1982). . Arch. Biochem. Biophys. 217, 312–323.

    Google Scholar 

  • Panov, A., and Scarpa, A. (1996a). Biochemistry 35, 427–432.

    Google Scholar 

  • Panov, A., and Scarpa, A. (1996b). Biochemistry 35, 12849–12856.

    Google Scholar 

  • Pfeiffer, D. R., Reed, P. W., and Lardy, H. A. (1974). Biochemistry 13, 4007–4014.

    Google Scholar 

  • Reed, K. C., and Bygrave, F. L. (1974). Biochem. J. 140, 143–150.

    Google Scholar 

  • Reed, P. W., and Lardy, H. A. (1972). J. Biol. Chem. 247, 6970–6977.

    Google Scholar 

  • Romani, A., Dowell, E., and Scarpa, A. (1991). J. Biol. Chem. 266, 24376–24384.

    Google Scholar 

  • Romani, A., Marfella, C., and Scarpa, A. (1993). J. Biol. Chem. 268, 15489–15495.

    Google Scholar 

  • Soole, K. L., Dry, I. B., and Wiskich, J. T. (1990). Physiol. Plant 87, 205–210.

    Google Scholar 

  • Thomas, A. P., Diggle, T. A., and Denton, R. M. (1986). Biochem. J. 238, 83–91.

    Google Scholar 

  • Tobin, A., Djerddjour, B., Journet, E., Neuburger, M., and Douce, R. (1980). Plant Physiol. 66, 225–229.

    Google Scholar 

  • Turano, F. J. (1998). Physiol. Plant 104, 337–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquim A. F. Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicente, J.A.F., Madeira, V.M.C. & Vercesi, A.E. Regulation by Magnesium of Potato Tuber Mitochondrial Respiratory Activities. J Bioenerg Biomembr 36, 525–531 (2004). https://doi.org/10.1007/s10863-004-8999-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-004-8999-x

Keywords

Navigation