Skip to main content
Log in

DNP-assisted solid-state NMR enables detection of proteins at nanomolar concentrations in fully protonated cellular milieu

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

With the sensitivity enhancements conferred by dynamic nuclear polarization (DNP), magic angle spinning (MAS) solid state NMR spectroscopy experiments can attain the necessary sensitivity to detect very low concentrations of proteins. This potentially enables structural investigations of proteins at their endogenous levels in their biological contexts where their native stoichiometries with potential interactors is maintained. Yet, even with DNP, experiments are still sensitivity limited. Moreover, when an isotopically-enriched target protein is present at physiological levels, which typically range from low micromolar to nanomolar concentrations, the isotope content from the natural abundance isotopes in the cellular milieu can outnumber the isotope content of the target protein. Using isotopically enriched yeast prion protein, Sup35NM, diluted into natural abundance yeast lysates, we optimized sample composition. We found that modest cryoprotectant concentrations and fully protonated environments support efficient DNP. We experimentally validated theoretical calculations of the limit of specificity for an isotopically enriched protein in natural abundance cellular milieu. We establish that, using pulse sequences that are selective for adjacent NMR-active nuclei, proteins can be specifically detected in cellular milieu at concentrations in the hundreds of nanomolar. Finally, we find that maintaining native stoichiometries of the protein of interest to the components of the cellular environment may be important for proteins that make specific interactions with cellular constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert BJ, Gao C, Sesti EL, Saliba EP, Alaniva N, Scott FJ, Sigurdsson ST, Barnes AB (2018) Dynamic nuclear polarization nuclear magnetic resonance in human cells using fluorescent polarizing agents. Biochemistry 57(31):4741–4746

    Article  Google Scholar 

  • Allen KD, Wegrzyn RD, Chernova TA, Müller S, Newnam GP, Winslett PA, Wittich KB, Wilkinson KD, Chernoff YO (2005) Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 169(3):1227–1242

    Article  Google Scholar 

  • Bajaj VS, Farrar CT, Hornstein MK, Mastovsky I, Vieregg J, Bryant J, Elena B, Kreischer KE, Temkin RJ, Griffin RG (2003) Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source. J Magn Reson 160(2):85–90

    Article  ADS  Google Scholar 

  • Bajaj VS, Hornstein MK, Kreischer KE, Sirigiri JR, Woskov PP, Mak-Jurkauskas ML, Herzfeld J, Temkin RJ, Griffin RG (2007) 250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J Magn Reson 189(2):251–279

    Article  ADS  Google Scholar 

  • Banci L, Barbieri L, Bertini I, Luchinat E, Secci E, Zhao Y, Aricescu AR (2013) Atomic-resolution monitoring of protein maturation in live human cells by NMR. Nat Chem Biol 9(5):297–299

    Article  Google Scholar 

  • Berruyer P, Björgvinsdóttir S, Bertarello A, Stevanato G, Rao Y, Karthikeyan G, Casano G, Ouari O, Lelli M, Reiter C, Engelke F, Emsley L (2020) Dynamic nuclear polarization enhancement of 200 at 21.15 T enabled by 65 kHz magic angle spinning. J Phys Chem Lett 11(19):8386–8391

    Article  Google Scholar 

  • Bertarello A, Berruyer P, Artelsmair M, Elmore CS, Heydarkhan-Hagvall S, Schade M, Chiarparin E, Schantz S, Emsley L (2022) In-cell quantification of drugs by magic-angle spinning dynamic nuclear polarization NMR. J Am Chem Soc 144(15):6734–6741

    Article  Google Scholar 

  • Burmann BM, Gerez JA, Matečko-Burmann I, Campioni S, Kumari P, Ghosh D, Mazur A, Aspholm EE, Šulskis D, Wawrzyniuk M (2020) Regulation of α-synuclein by chaperones in mammalian cells. Nature 577(7788):127–132

    Article  Google Scholar 

  • Costello WN, Xiao Y, Frederick KK (2019) DNP-assisted NMR investigation of proteins at endogenous levels in cellular milieu. Methods Enzymol 615:373–406

    Article  Google Scholar 

  • Dietmair S, Hodson MP, Quek LE, Timmins NE, Gray P, Nielsen LK (2012) A multi-omics analysis of recombinant protein production in Hek293 cells. PLoS ONE 7(8):e43394

    Article  ADS  Google Scholar 

  • Elathram N, Ackermann BE, Debelouchina GT (2022) DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. J Magn Reson Open 10–11:100057

    Article  Google Scholar 

  • Frederick KK, Debelouchina GT, Kayatekin C, Dorminy T, Jacavone AC, Griffin RG, Lindquist S (2014) Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics. Chem Biol 21(2):295–305

    Article  Google Scholar 

  • Frederick KK, Michaelis VK, Corzilius B, Ong T-C, Jacavone AC, Griffin RG, Lindquist S (2015) Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus. Cell 163(3):620–628

    Article  Google Scholar 

  • Frederick KK, Michaelis VK, Caporini MA, Andreas LB, Debelouchina GT, Griffin RG, Lindquist S (2017) Combining DNP NMR with segmental and specific labeling to study a yeast prion protein strain that is not parallel in-register. Proc Natl Acad Sci USA 114(14):3642–3647

    Article  ADS  Google Scholar 

  • Freedberg DI, Selenko P (2014) Live cell NMR. Annu Rev Biophys 43:171–192

    Article  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741

    Article  ADS  Google Scholar 

  • Ghosh R, Dong J, Wall J, Frederick KK (2018) Amyloid fibrils embodying distinctive yeast prion phenotypes exhibit diverse morphologies. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy059

    Article  Google Scholar 

  • Ghosh R, Xiao Y, Kragelj J, Frederick KK (2021) In-cell sensitivity-enhanced NMR of intact viable mammalian cells. J Am Chem Soc 143(44):18454–18466

    Article  Google Scholar 

  • Groves JD, Falson P, le Maire M, Tanner MJ (1996) Functional cell surface expression of the anion transport domain of human red cell band 3 (AE1) in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 93(22):12245–12250

    Article  ADS  Google Scholar 

  • Gupta S, Tycko R (2018) Segmental isotopic labeling of HIV-1 capsid protein assemblies for solid state NMR. J Biomol NMR 70(2):103–114

    Article  Google Scholar 

  • Gupta R, Lu M, Hou G, Caporini MA, Rosay M, Maas W, Struppe J, Suiter C, Ahn J, Byeon I-JL (2016) Dynamic nuclear polarization enhanced MAS NMR spectroscopy for structural analysis of HIV-1 protein assemblies. J Phys Chem B 120(2):329–339

    Article  Google Scholar 

  • Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276(5314):930–932

    Article  Google Scholar 

  • Harrabi R, Halbritter T, Aussenac F, Dakhlaoui O, van Tol J, Damodaran KK, Lee D, Paul S, Hediger S, Mentink-Vigier F, Sigurdsson ST, De Paepe G (2022) Highly efficient polarizing agents for MAS-DNP of proton-dense molecular solids. Angew Chem Int Ed Engl 61(12):e202114103

    Article  Google Scholar 

  • Heiliger J, Matzel T, Cetiner EC, Schwalbe H, Kuenze G, Corzilius B (2020) Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein. Phys Chem Chem Phys 22(44):25455–25466

    Article  Google Scholar 

  • Heise H, Seidel K, Etzkorn M, Becker S, Baldus M (2005) 3D NMR spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations. J Magn Reson 173(1):64–74

    Article  ADS  Google Scholar 

  • Helsen CW, Glover JR (2012) Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 287(1):542–556

    Article  Google Scholar 

  • Inaba A, Andersson O (2007) Multiple glass transitions and two step crystallization for the binary system of water and glycerol. Thermochim Acta 461(1):44–49

    Article  Google Scholar 

  • Inomata K, Ohno A, Tochio H, Isogai S, Tenno T, Nakase I, Takeuchi T, Futaki S, Ito Y, Hiroaki H (2009) High-resolution multi-dimensional NMR spectroscopy of proteins in human cells. Nature 458(7234):106–109

    Article  ADS  Google Scholar 

  • Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon− nitrogen distances in uniformly 13C, 15N-labeled solids. J Am Chem Soc 124(36):10728–10742

    Article  Google Scholar 

  • Kang X, Kirui A, Dickwella Widanage MC, Mentink-Vigier F, Cosgrove DJ, Wang T (2019) Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nat Commun 10(1):347

    Article  ADS  Google Scholar 

  • Kaplan M, Narasimhan S, de Heus C, Mance D, van Doorn S, Houben K, Popov-Čeleketić D, Damman R, Katrukha EA, Jain P (2016) EGFR dynamics change during activation in native membranes as revealed by NMR. Cell 167(5):1241-1251. e1211

    Article  Google Scholar 

  • Kaplan M, Narasimhan S, de Heus C, Mance D, van Doorn S, Houben K, Popov-Celeketic D, Damman R, Katrukha EA, Jain P, Geerts WJC, Heck AJR, Folkers GE, Kapitein LC, Lemeer S, van Bergen En PMP, Henegouwen and M. Baldus, (2016) EGFR dynamics change during activation in native membranes as revealed by NMR. Cell 167(5):1241-1251 e1211

    Article  Google Scholar 

  • Kehlet CT, Sivertsen AC, Bjerring M, Reiss TO, Khaneja N, Glaser SJ, Nielsen NC (2004) Improving solid-state NMR dipolar recoupling by optimal control. J Am Chem Soc 126(33):10202–10203

    Article  Google Scholar 

  • Kiktev DA, Patterson JC, Müller S, Bariar B, Pan T, Chernoff YO (2012) Regulation of chaperone effects on a yeast prion by cochaperone Sgt2. Mol Cell Biol 32(24):4960–4970

    Article  Google Scholar 

  • Łabędź B, Wańczyk A, Rajfur Z (2017) Precise mass determination of single cell with cantilever-based microbiosensor system. PLoS ONE 12(11):e0188388

    Article  Google Scholar 

  • Lane LB (1925) Freezing points of glycerol and its aqueous solutions. Ind Eng Chem 17(9):924–924

    Article  Google Scholar 

  • Leiting B, Marsilio F, O’Connell JF (1998) Predictable deuteration of recombinant proteins expressed in Escherichia coli. Anal Biochem 265(2):351–355

  • Liao SY, Lee M, Wang T, Sergeyev IV, Hong M (2016) Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location. J Biomol NMR 64(3):223–237

    Article  Google Scholar 

  • Lim BJ, Ackermann BE, Debelouchina GT (2020) Targetable tetrazine-based dynamic nuclear polarization agents for biological systems. ChemBioChem 21(9):1315–1319

    Article  Google Scholar 

  • Lund A, Casano G, Menzildjian G, Kaushik M, Stevanato G, Yulikov M, Jabbour R, Wisser D, Renom-Carrasco M, Thieuleux C, Bernada F, Karoui H, Siri D, Rosay M, Sergeyev IV, Gajan D, Lelli M, Emsley L, Ouari O, Lesage A (2020) TinyPols: a family of water-soluble binitroxides tailored for dynamic nuclear polarization enhanced NMR spectroscopy at 18.8 and 21.1 T. Chem Sci 11(10):2810–2818

    Article  Google Scholar 

  • Märker K, Paul S, Fernández-de-Alba C, Lee D, Mouesca J-M, Hediger S, De Paëpe G (2017) Welcoming natural isotopic abundance in solid-state NMR: probing π-stacking and supramolecular structure of organic nanoassemblies using DNP. Chem Sci 8(2):974–987

    Article  Google Scholar 

  • Masison DC, Kirkland PA, Sharma D (2009) Influence of Hsp70s and their regulators on yeast prion propagation. Prion 3(2):65–73

    Article  Google Scholar 

  • Mentink-Vigier F, Vega S, De Paëpe G (2017) Fast and accurate MAS–DNP simulations of large spin ensembles. Phys Chem Chem Phys 19(5):3506–3522

    Article  Google Scholar 

  • Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35(12):1050–1055

    Article  Google Scholar 

  • Misra PM (1967) The effects of deuterium on living organisms. Curr Sci 36(17):447–453

    Google Scholar 

  • Mollica G, Dekhil M, Ziarelli F, Thureau P, Viel S (2015) Quantitative structural constraints for organic powders at natural isotopic abundance using dynamic nuclear polarization solid-state NMR spectroscopy. Angew Chem Int Ed Engl 54(20):6028–6031

    Article  Google Scholar 

  • Narasimhan S, Scherpe S, Lucini Paioni A, van der Zwan J, Folkers GE, Ovaa H, Baldus M (2019a) DNP-supported solid-state NMR spectroscopy of proteins inside mammalian cells. Angew Chem Int Ed Engl 58(37):12969–12973

    Article  Google Scholar 

  • Narasimhan S, Scherpe S, Lucini Paioni A, Van Der Zwan J, Folkers GE, Ovaa H, Baldus M (2019b) DNP-supported solid-state NMR spectroscopy of proteins inside mammalian cells. Angew Chem 131(37):13103–13107

    Article  ADS  Google Scholar 

  • Nollen EA, Morimoto RI (2002) Chaperoning signaling pathways: molecular chaperones as stress-sensingheat shock’proteins. J Cell Sci 115(14):2809–2816

    Article  Google Scholar 

  • Oftadeh O, Salvy P, Masid M, Curvat M, Miskovic L, Hatzimanikatis V (2021) A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics. Nat Commun 12(1):4790

    Article  ADS  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2(4):272–281

    Article  Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59(2):569–590

    Article  ADS  Google Scholar 

  • Pinon AC, Schlagnitweit J, Berruyer P, Rossini AJ, Lelli M, Socie E, Tang M, Pham T, Lesage A, Schantz S, Emsley L (2017) Measuring nano-to microstructures from relayed dynamic nuclear polarization NMR. J Phys Chem C 121(29):15993–16005

  • Qiang W, Yau W-M, Lu J-X, Collinge J, Tycko R (2017) Structural variation in amyloid-β fibrils from Alzheimer’s disease clinical subtypes. Nature 541(7636):217

    Article  ADS  Google Scholar 

  • Rankin AGM, Trebosc J, Pourpoint F, Amoureux JP, Lafon O (2019) Recent developments in MAS DNP-NMR of materials. Solid State Nucl Magn Reson 101:116–143

    Article  Google Scholar 

  • Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci 109(13):4863–4868

    Article  ADS  Google Scholar 

  • Rosay M (2001) Sensitivity-enhanced nuclear magnetic resonance of biological solids. Ph.D., Massachusetts Institute of Technology

  • Rosay M, Zeri AC, Astrof NS, Opella SJ, Herzfeld J, Griffin RG (2001) Sensitivity-enhanced NMR of biological solids: dynamic nuclear polarization of Y21M fd bacteriophage and purple membrane. J Am Chem Soc 123(5):1010–1011

    Article  Google Scholar 

  • Rosay M, Lansing JC, Haddad KC, Bachovchin WW, Herzfeld J, Temkin RJ, Griffin RG (2003) High-frequency dynamic nuclear polarization in MAS spectra of membrane and soluble proteins. J Am Chem Soc 125(45):13626–13627

    Article  Google Scholar 

  • Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Wälchli M (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458(7234):102–105

    Article  ADS  Google Scholar 

  • Sauvée C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem 125(41):11058–11061

    Article  ADS  Google Scholar 

  • Sauvee C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed Engl 52(41):10858–10861

    Article  Google Scholar 

  • Scherpelz KP, Wang S, Pytel P, Madhurapantula RS, Srivastava AK, Sachleben JR, Orgel J, Ishii Y, Meredith SC (2021) Atomic-level differences between brain parenchymal- and cerebrovascular-seeded Aβ fibrils. Sci Rep 11(1):247

    Article  Google Scholar 

  • Schlagnitweit J, Sandoz SF, Jaworski A, Guzzetti I, Aussenac F, Carbajo RJ, Chiarparin E, Pell AJ, Petzold K (2019) Observing an antisense drug complex in intact human cells by in-cell NMR. bioRxiv 589812

  • Schubeis T, Luhrs T, Ritter C (2015) Unambiguous assignment of short- and long-range structural restraints by solid-state NMR spectroscopy with segmental isotope labeling. ChemBioChem 16(1):51–54

    Article  Google Scholar 

  • Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci 103(32):11904–11909

    Article  ADS  Google Scholar 

  • Serio TR, Cashikar AG, Moslehi JJ, Kowal AS, Lindquist SL (1999) Yeast prion [psi +] and its determinant, Sup35p Methods. Enzymol 309:649–673

  • Song C, Hu KN, Joo CG, Swager TM, Griffin RG (2006) TOTAPOL: a biradical polarizing agent for dynamic nuclear polarization experiments in aqueous media. J Am Chem Soc 128(35):11385–11390

    Article  Google Scholar 

  • Stevanato G, Casano G, Kubicki DJ, Rao Y, Esteban Hofer L, Menzildjian G, Karoui H, Siri D, Cordova M, Yulikov M, Jeschke G, Lelli M, Lesage A, Ouari O, Emsley L (2020) Open and closed radicals: local geometry around unpaired electrons governs magic-angle spinning dynamic nuclear polarization performance. J Am Chem Soc 142(39):16587–16599

    Article  Google Scholar 

  • Takahashi H, Lee D, Dubois L, Bardet M, Hediger S, De Paëpe G (2012) Rapid natural-abundance 2D 13C–13C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. Angew Chem Int Ed 51(47):11766–11769

    Article  Google Scholar 

  • Theillet F-X, Rose HM, Liokatis S, Binolfi A, Thongwichian R, Stuiver M, Selenko P (2013) Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nat Protoc 8(7):1416

    Article  Google Scholar 

  • Tran NT, Mentink-Vigier F, Long JR (2020) Dynamic nuclear polarization of biomembrane assemblies. Biomolecules 10(9):1246

    Article  Google Scholar 

  • van der Wel PC, Hu KN, Lewandowski J, Griffin RG (2006) Dynamic nuclear polarization of amyloidogenic peptide nanocrystals: GNNQQNY, a core segment of the yeast prion protein Sup35p. J Am Chem Soc 128(33):10840–10846

    Article  Google Scholar 

  • van der Zwan KP, Riedel W, Aussenac F, Reiter C, Kreger K, Schmidt H-W, Risse T, Gutmann T, Senker J (2021) 19F MAS DNP for probing molecules in nanomolar concentrations: direct polarization as key for solid-state NMR spectra without solvent and matrix signals. J Phy Chem C 125(13):7287–7296

    Article  Google Scholar 

  • Viennet T, Viegas A, Kuepper A, Arens S, Gelev V, Petrov O, Grossmann TN, Heise H, Etzkorn M (2016) Selective protein hyperpolarization in cell lysates using targeted dynamic nuclear polarization. Angew Chem Int Ed Engl 55(36):10746–10750

    Article  Google Scholar 

  • Wang M, Weiss M, Simonovic M, Haertinger G, Schrimpf SP, Hengartner MO, von Mering C (2012) PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteom 11(8):492–500

    Article  Google Scholar 

  • Xiao Y, Ghosh R, Frederick KK (2021) In-cell NMR of intact mammalian cells preserved with the cryoprotectants DMSO and glycerol have similar DNP performance. Front Mol Biosci 8:789478

    Article  Google Scholar 

  • Yao R, Beriashvili D, Zhang W, Li S, Safeer A, Gurinov A, Rockenbauer A, Yang Y, Song Y, Baldus M, Liu Y (2022) Highly bioresistant, hydrophilic and rigidly linked trityl-nitroxide biradicals for cellular high-field dynamic nuclear polarization. Chem Sci 13(47):14157–14164

    Article  Google Scholar 

  • Zhai W, Lucini Paioni A, Cai X, Narasimhan S, Medeiros-Silva J, Zhang W, Rockenbauer A, Weingarth M, Song Y, Baldus M, Liu Y (2020) Postmodification via thiol-click chemistry yields hydrophilic trityl-nitroxide biradicals for biomolecular high-field dynamic nuclear polarization. J Phys Chem B 124(41):9047–9060

    Article  Google Scholar 

Download references

Funding

W.N.C. was supported by a graduate research fellowship from the NSF and NIH MB T32 GM008297. This work was supported by grants from the National Science Foundation [1751174]; the Welch Foundation [1-1923-20200401]; NIH R01NS134921; the Lupe Murchison Foundation, and the Kinship Foundation (Searle Scholars Program) to K.K.F. The National High Magnetic Field Laboratory (NHMFL) is supported by the NSF Division of Materials Research (DMR1644779 and DMR-2128556) and by the State of Florida. The 14.1T DNP system at NHMFL is supported by the National Institutes of Health Grant NIH P41 GM122698 and RM1 GM148766.

Author information

Authors and Affiliations

Authors

Contributions

KKF and WNC wrote the main manuscript text. WNC prepared figures 1, 2, 4 & 5. YX prepared figure 3. FM-V and JK performed experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kendra K. Frederick.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 594 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costello, W.N., Xiao, Y., Mentink-Vigier, F. et al. DNP-assisted solid-state NMR enables detection of proteins at nanomolar concentrations in fully protonated cellular milieu. J Biomol NMR (2024). https://doi.org/10.1007/s10858-024-00436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10858-024-00436-9

Keywords

Navigation