Skip to main content
Log in

Statistical removal of background signals from high-throughput 1H NMR line-broadening ligand-affinity screens

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

NMR ligand-affinity screens are vital to drug discovery, are routinely used to screen fragment-based libraries, and used to verify chemical leads from high-throughput assays and virtual screens. NMR ligand-affinity screens are also a highly informative first step towards identifying functional epitopes of unknown proteins, as well as elucidating the biochemical functions of protein–ligand interaction at their binding interfaces. While simple one-dimensional 1H NMR experiments are capable of indicating binding through a change in ligand line shape, they are plagued by broad, ill-defined background signals from protein 1H resonances. We present an uncomplicated method for subtraction of protein background in high-throughput ligand-based affinity screens, and show that its performance is maximized when phase-scatter correction is applied prior to subtraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The equation reported in the main text of Shortridge et al. (2008) (Eq. 3) contains a typographical error. The correct equation (equation A8) may be found in the Appendix of the aforementioned work.

References

  • Baker M (2013) Fragment-based lead discovery grows up. Nat Rev Drug Discov 12:5–7. doi:10.1038/nrd3926

    Article  Google Scholar 

  • Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti A, Sundstrom M (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68. doi:10.1023/A:1008354229396

    Article  Google Scholar 

  • Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64. doi:10.2307/2282330

    Article  MATH  MathSciNet  Google Scholar 

  • Eaton JW, Bateman D, Hauberg S (2008) GNU octave manual version 3. Network Theory Limited, Bristol

    Google Scholar 

  • Ferentz AE, Wagner G (2000) NMR spectroscopy: a multifaceted approach to macromolecular structure. Q Rev Biophys 33:29–65. doi:10.1017/s0033583500003589

    Article  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219. doi:10.1038/nrd2220

    Article  Google Scholar 

  • Hajduk PJ, Olejniczak ET, Fesik SW (1997) One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc 119:12257–12261. doi:10.1021/Ja9715962

    Article  Google Scholar 

  • Harner MJ, Frank AO, Fesik SW (2013) Fragment-based drug discovery using NMR spectroscopy. J Biomol NMR 56:65–75. doi:10.1007/s10858-013-9740-z

    Article  Google Scholar 

  • Hwang TL, Shaka AJ (1995) Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson A 112:275–279. doi:10.1006/jmra.1995.1047

    Article  ADS  Google Scholar 

  • Lepre CA (2011) Practical aspects of NMR-based fragment screening. Methods Enzymol 493:219–239. doi:10.1016/b978-0-12-381274-2.00009-1

    Article  Google Scholar 

  • Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev 104:3641–3675. doi:10.1021/Cr030409h

    Article  Google Scholar 

  • Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117. doi:10.1021/Ja0100120

    Article  Google Scholar 

  • Mercier KA, Baran M, Ramanathan V, Revesz P, Xiao R, Montelione GT, Powers R (2006) FAST-NMR: functional annotation screening technology using NMR spectroscopy. J Am Chem Soc 128:15292–15299. doi:10.1021/Ja0651759

    Article  Google Scholar 

  • Mercier KA, Shortridge MD, Powers R (2009) A multi-step NMR screen for the identification and evaluation of chemical leads for drug discovery. Comb Chem High Throughput Screen 12:285–295

    Article  Google Scholar 

  • Muller A, MacCallum RM, Sternberg MJE (2002) Structural characterization of the human proteome. Genome Res 12:1625–1641. doi:10.1101/gr.221202

    Article  Google Scholar 

  • Nguyen BD, Meng X, Donovan KJ, Shaka AJ (2007) SOGGY: solvent-optimized double gradient spectroscopy for water suppression. A comparison with some existing techniques. J Magn Reson 184:263–274. doi:10.1016/j.jmr.2006.10.014

    Article  ADS  Google Scholar 

  • Pellecchia M, Sem DS, Wuthrich K (2002) NMR in drug discovery. Nat Rev Drug Discov 1:211–219. doi:10.1038/nrd748

    Article  Google Scholar 

  • Powers R (2009) Advances in nuclear magnetic resonance for drug discovery. Expert Opin Drug Discov 4:1077–1098

    Article  Google Scholar 

  • Powers R, Copeland JC, Germer K, Mercier KA, Ramanathan V, Revesz P (2006) Comparison of protein active site structures for functional annotation of proteins and drug design. Proteins Struct Funct Bioinform 65:124–135

    Article  Google Scholar 

  • Powers R, Mercier KA, Copeland JC (2008) The application of FAST-NMR for the identification of novel drug discovery targets. Drug Discov Today 13:172–179. doi:10.1016/j.drudis.2007.11.001

    Article  Google Scholar 

  • Powers R, Copeland JC, Stark JL, Caprez A, Guru A, Swanson D (2011) Searching the protein structure database for ligand-binding site similarities using CPASS v. 2. BMC Res Notes. doi:10.1186/1756-0500-4-17

    Google Scholar 

  • Shortridge MD, Hage DS, Harbison GS, Powers R (2008) Estimating protein–ligand binding affinity using high-throughput screening by NMR. J Comb Chem 10:948–958. doi:10.1021/Cc800122m

    Article  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science (Washington, DC) 274:1531–1534

    Article  ADS  Google Scholar 

  • Wolfram Research I (2014) Mathematica, 10.0th edn. Wolfram Research Inc., Champaign

    Google Scholar 

  • Worley B, Powers R (2014a) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9:1138–1144. doi:10.1021/Cb4008937

    Article  Google Scholar 

  • Worley B, Powers R (2014b) Simultaneous phase and scatter correction for NMR datasets. Chemom Intell Lab Syst 131:1–6. doi:10.1016/j.chemolab.2013.11.005

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by funds from the National Institutes of Health (Grant number R21AI081154). The research was performed in facilities renovated with support from the National Institutes of Health (Grant number RR015468-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Powers.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Worley, B., Sisco, N.J. & Powers, R. Statistical removal of background signals from high-throughput 1H NMR line-broadening ligand-affinity screens. J Biomol NMR 63, 53–58 (2015). https://doi.org/10.1007/s10858-015-9962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9962-3

Keywords

Navigation