Skip to main content
Log in

4D Non-uniformly sampled C,C-NOESY experiment for sequential assignment of 13C,15N-labeled RNAs

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A 4D 13C(aromatic),13C(ribose)-edited NOESY experiment is introduced to improve sequential assignment of non-coding RNA, often hampered by a limited dispersion of 1H and 13C chemical shifts. The 13C-labeling of RNA is fully utilized by inclusion of two 13C evolution periods. These dimensions provide enhanced dispersion of resonances in the 4D spectrum. High spectral resolution is obtained using random non-uniform sampling in three indirect dimensions. The autocorrelation peaks are efficiently suppressed using band-selective pulses. Since the dynamic range of observed resonances is significantly decreased, the reconstruction of the 4D spectrum is greatly simplified. The experiment can replace two conventionally sampled 3D NOESY spectra (either ribose-13C- or aromatic-13C-separated), and remove most ambiguities encountered during sequential walks. The assignment strategy based on a homonuclear and 4D C,C-edited NOESY experiments is proposed and verified on a 34-nt RNA showing typical structure elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Brutscher B, Simorre JP (2001) Transverse relaxation optimized HCN experiment for nucleic acids: combining the advantages of TROSY and MQ spin evolution. J Biomol NMR 21:367–372

    Article  Google Scholar 

  • Brutscher B, Boisbouvier J, Pardi A, Marion D, Simorre JP (1998) Improved sensitivity and resolution in 1H-13C NMR experiments of RNA. J Am Chem Soc 120:11845–11851

    Google Scholar 

  • Cevec M, Thibaudeau C, Plavec J (2010) NMR structure of the let-7 miRNA interacting with the site LCS1 of lin-41 mRNA from Caenorhabditis elegans. Nucleic Acids Res 38:7814–7821

    Article  Google Scholar 

  • Coggins BE, Zhou P (2008) High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN. J Biomol NMR 42:225–239

    Article  Google Scholar 

  • Diercks T, Truffault V, Coles M, Millett O (2010) Diagonal-Free 3D/4D HN, HN-TROSY-NOESY-TROSY. J Am Chem Soc 132:2138–2139

    Article  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  Google Scholar 

  • Fiala R, Jiang F, Sklenář V (1998) Sensitivity optimized HCN and HCNCH experiments for 13C/15N labeled oligonucleotides. J Biomol NMR 12:373–383

    Google Scholar 

  • Fiala R, Czernek J, Sklenář V (2000) Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids. J Biomol NMR 16:291–302

    Article  Google Scholar 

  • Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4:936–962

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2008) SPARKY 3: University of California, San Francisco, http://www.cgl.ucsf.edu/home/sparky

  • Hyberts SG, Frueh DP, Arthanari H, Wagner G (2009) FM reconstruction of non-uniformly sampled protein NMR data at higher dimensions and optimization by distillation. J Biomol NMR 45:283–294

    Article  Google Scholar 

  • Kay LE, Clore GM, Bax A, Gronenborn AM (1990) Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1-beta in solution. Science 249:411–414

    Google Scholar 

  • Kazimierczuk K, Misiak M, Stanek J, Zawadzka-Kazimierczuk A, Koźmiński W (2012) Generalized Fourier transform for non-uniform sampled data. Top Curr Chem 316:79–124

    Article  Google Scholar 

  • Kupče Ē, Freeman R (1995) Adiabatic pulses for wide-band inversion and broad-band decoupling. J Magn Reson Ser A 115:273–276

    Article  Google Scholar 

  • Kupče Ē, Boyd J, Campbell ID (1995) Short selective pulses for biochemical applications. J Magn Reson Ser B 106:300–303

    Article  Google Scholar 

  • Lu K, Miyazaki Y, Summers MF (2010) Isotope labeling strategies for NMR studies of RNA. J Biomol NMR 46:113–125

    Article  Google Scholar 

  • Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14

    Article  Google Scholar 

  • Marino JP, Schwalbe H, Anklin C, Bermel W, Crothers DM, Griesinger C (1994) Three-dimensional triple-resonance 1H, 13C, 31P experiment: sequential through-bond correlation of ribose protons and intervening phosphorus along the RNA oligonucleotide backbone. J Am Chem Soc 116:6472–6473

    Article  Google Scholar 

  • Marino JP, Diener JL, Moore PB, Griesinger C (1997) Multiple-quantum coherence dramatically enhances the sensitivity of CH and CH2 correlations in uniformly 13C-labeled RNA. J Am Chem Soc 119:7361–7366

    Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  Google Scholar 

  • Mobli M, Stern AS, Bermel W, King GF, Hoch JC (2010) A non-uniformly sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid protein sidechain assignment. J Magn Reson 204:160–164

    Article  ADS  Google Scholar 

  • Nikonowicz EP, Pardi A (1993) An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. J Mol Biol 232:1141–1156

    Article  Google Scholar 

  • Riek R, Pervushin K, Fernandez C, Kainosho M, Wüthrich K (2001) [13C, 13C]- and [13C, 1H]-TROSY in a triple resonance experiment for ribose-base and intrabase correlations in nucleic acids. J Am Chem Soc 123:658–664

    Google Scholar 

  • Stanek J, Augustyniak R, Koźminski W (2012) Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson 214:91–102

    Article  ADS  Google Scholar 

  • Stanek J, Nowakowski M, Saxena S, Ruszczyńska-Bartnik K, Ejchart A, Koźmiński W (2013) Selective diagonal-free 13C, 13C-edited aliphatic–aromatic NOESY experiment with non-uniform sampling. J Biomol NMR 56:217–226

    Article  Google Scholar 

  • Varani G, Aboulela F, Allain FHT (1996) NMR investigation of RNA structure. Prog Nucl Magn Reson Spectrosc 29:51–127

    Article  Google Scholar 

  • Vuister GW, Clore GM, Gronenborn AM, Powers R, Garrett DS, Tschudin R, Bax A (1993) Increased resolution and improved spectral quality in four-dimensional 13C/13C-separated HMQC-NOESY-HMQC spectra using pulsed-field gradients. J Magn Reson Ser B 101:210–213

    Google Scholar 

  • Wen J, Zhou P, Wu JH (2012) Efficient acquisition of high-resolution 4-D diagonal-suppressed methyl–methyl NOESY for large proteins. J Magn Reson 218:128–132

    Article  ADS  Google Scholar 

  • Werner-Allen JW, Coggins BE, Zhou P (2010) Fast acquisition of high resolution 4-D amide–amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN. J Magn Reson 204:173–178

    Article  ADS  Google Scholar 

  • Wijmenga SS, van Buuren BNM (1998) The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 32:287–387

    Article  Google Scholar 

  • Xia YL, Man D, Zhu G (2001) 3D H-aro-NOESY-CH3NH and C-aro-NOESY-CH3NH experiments for double labeled proteins. J Biomol NMR 19:355–360

    Article  Google Scholar 

  • Xu Y, Lin Z, Ho C, Yang D (2005) A general strategy for the assignment of aliphatic side-chain resonances of uniformly 13C, 15N-labeled large proteins. J Am Chem Soc 127:11920–11921

    Article  Google Scholar 

  • Xu YQ, Zheng Y, Fan JS, Yang DW (2006) A new strategy for structure determination of large proteins in solution without deuteration. Nat Methods 3:931–937

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Bio-NMR project funded by European Commission’s 7th Framework Program (contract No. 1618630) and the Slovenian Research Agency, the Ministry of Higher Education, Science and Technology of the Republic of Slovenia [P1-0242 and J1-4020]. J. S. thanks Polish National Science Centre for the financial support with the Grant No. 2012/05/N/ST4/01120. The study was carried out at the Biological and Chemical Research Centre, University of Warsaw, established within the project co-financed by European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Cevec.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanek, J., Podbevšek, P., Koźmiński, W. et al. 4D Non-uniformly sampled C,C-NOESY experiment for sequential assignment of 13C,15N-labeled RNAs. J Biomol NMR 57, 1–9 (2013). https://doi.org/10.1007/s10858-013-9771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9771-5

Keywords

Navigation